

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Přesné magnetické snímače a jejich aplikace

Pavel Ripka Czech Technical University, Prague, Czech Republic

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Obsah přednášky

- Rozsah měřených polí
- Typy magnetických senzorů
- Základní principy a nové trendy:
	- Polovodičové senzory
	- XMR

….

- Fluxgate
- Resonanční senzory
- Indukční cívky

Motivation: applications

The Earth's field: total 50 μ T, horizontal 20 μ T

- **Compass**
	- -1 deg \sim 350 nT ... makes 17 m error in 1 km
	- -0.1 deg \sim 35 nT
	- gimballing error
- UXO location
	- 155 mm projectile 1.5 m deep ... 10 to 50 nT
	- $-$ bomb 6 m deep ... 1 to 5 nT
	- 1 nT in 50 000 nT ~ 20 ppm

Horizontal Intensity [nT] for 2000.0

IGRF 2000 (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Contour interval is 2000 nT

25.6.2010

25.6.2010

Typical daily variations of the Earth's field

Magnetic sensors: basic types

- Magnetic field sensors
	- semiconductor
	- ferromagnetic
	- other (optical, resonant, SQUID…)

25.6.2010

Magnetic field sensors

Scalar

Measure the size of **B** ("total field B")

$$
B=\sqrt{B_x^2+B_y^2+B_z^2}
$$

only resonant sensors

Vector

Measure the projection of **B** into the sensitive axis

- single-axis
- tri-axial

most magnetic sensors

Tri-axial sensors: compass

25.6.2010

Magnetic field sensors: DC and AC

AC

Measure only changing field: *induction coils*

$$
V_i = -\frac{d\Phi}{dt} = -\frac{d}{dt}(NAB)
$$

- *Vi .. Induced voltage*
- ^Φ *.. Magnetic flux*
- *A .. Coil area*
- *N .. Number of turns*

DC

Measure DC and AC fields

most

magnetic sensors

25.6.2010

Basic sensor specifications

- FS range, linearity, hysteresis
- TC ("tempco") of sensitivity
- Offset, offset tempco and long-term stability
- Perming (= null change after magnetic shock)
- Crossfield sensitivity
- Noise
	- PSD , rms or p-p value
- Resistance against environment
	- temperature, humidity, vibrations

Types of magnetic field sensors

- Semiconductor sensors (Hall, ...)
- Ferromagnetic magnetoresistors (AMR, GMR, …)
	- Resonant magnetometers (Proton, Cesium, ...)
	- SQUIDs (LTS + HTS)
	- Induction coils, rotating coils
	- Optical (Fibre optic, ...)
	- Fluxgate
- Other principles (GMI, magnetoelastic, ...)

Magnetic field magnitudes

- 100 T Pulse field
- 10 T Superconducting magnet
- 2 T Electromagnet
- 0.5 T Surface of strong perm. magnet (NdFeB)
- 0.1 T Surface of cheap magnet (ferrite)
- 10 mT Power cable
- 50 µT Earth's field
- 1 µT Vehicle
- 10 fT Human brain

Basic rules

Dipole field (from small objects) $B \sim 1/r^3$

Long iron pipe

 $B \sim 1/r^2$

Long straight current conductor

$$
B\sim 1/r
$$

Semiconductor magnetic sensors

- Hall
	- integrated
	- GaAs, Si, (Ge)
	- non-plate: vertical, cylindrical
- Semiconductor magnetoresistors
- *Exotic*

(magnetotransistors, magnetodiodes, rotating current domain, ...)

Permalloy Flux concentrators

Used for Hall and MR Increase sensitivity Possible problems:

- TC of sensitivity
- perming
- linearity

Cylindrical Hall device with integrated magnetic flux concentrators (Sentron AG)

InSb Hall element with ferrite field concentrator

(Asahi Kasei Electronic HW series).

25.6.2010

Magnetic force lines of field concentrators for a thin-film Hall sensor

25.6.2010

Semiconductor Magnetoresistors

$$
R_B = R_0 \frac{\rho B}{\rho 0} \{1 + m(\mu B)^2\}
$$

2%/°C

www.murata.com

25.6.2010

AMR: anisotropic magnetoresistance

- Permalloy thin film strip deposited on a silicon wafer magnetized in x direction
- H_v rotates magnetisation M \rightarrow R changes by 2%-3%

AMR: linearisation

Bad idea:

Good idea:

Shifting the working point by bias field

Barber-pole Al bars deflect the current by $45⁰$

(Honeywell)

AMR bridge sensor

Philips KMZ

Full bridge made of meandered resistors with barber-pole strips

25.6.2010

Noise of AMR

Fig. 5. Noise of the open-loop AMR magnetometer: power spectrum density and time plot (5 nT/div).

Noise of AMR

25.6.2010

AMR: flipping

Unwanted change of strip permanent magnetization may distort the sensor characteristic.

Periodical saturation of the permalloy strips is the cure

Characteristics of Philips KMZ 10 after positive $[+]$ and negative $[-]$ flip P.F. is characteristics for periodicalflipping

AMR: flipping

Honeywell AMR sensor with integrated flat flipping coil

Flipping:

- + decreases offset
- + reduces perming
- + increases sensitivity
- increases power consumption

KMZ 51 – virgin accuracy

Flipped + compensated KMZ 51 - overall accuracy

Magnetic flux density [uT]

25.6.2010

KMZ 51 - overview

• **no flipping:**

- Linearity and hysteresis: +/- 1 % FS (+/- 300uT)
- Tempco. OFFSET –90 nT/K
- Tempco. SENSITIVITY –585 ppm/K

• **flipping & feedback:**

- Linearity and hysteresis: +/- 40ppm FS (+/-300uT)
- Tempco. OFFSET approx. 2.1 nT/K
- Tempco. SENSITIVITY approx. 20ppm/K

+ noise: 5 nT/sqrHz @ 1Hz

no statistics!

HMC 1001

Flipping OFF

HMC 1001

Temperature (°C)

HMC 1001 – offset drift

AMR vs. Hall and fluxgate

GMR: Giant Magnetoresistance

Spin - dependent scaterring:

Resistance of two thin ferromagnetic layers separated by a thin nonmagnetic conducting layer can be altered by changing the moments of the ferromagnetic layers from parallel to antiparallel.

Common GMR structures

technology developed for reading heads

A: Spin valve B: Sandwich C: Multilayer

GMR sandwich

Sensitive, but not good for linear sensors

GMR: spin valve

Angular response

Unpinned soft layer rotates with external field

If saturated, responds only to field direction, not value

2600 2650 2700 2750 -30 -20 -10 0 10 20 30 **Applied Field (mTesla) Resistance (** Ω**)**

Large field response

hard layer may be demagnetized

25.6.2010

SDT (spin-dependent tunelling) magnetoresistor

A cross section of the SDT structure.

The vertical scale is exaggerated so the thicknesses are visible. The lateral dimensions of the tunnel junctions range from $0.1 \mu m$ to $1000 \mu m$.

25.6.2010

SDT (spin-dependent tunelling) magnetoresistor

The magnitude of the SDT magnetoresistance can be greater than 40% compared to ~10% for spin valves.

source: Mark Tondra, NVE

25.6.2010

Biased SDT sensor

A common magnetic tool for getting a linear response from almost any material is to incorporate a feedback coil and measure the current in this coil that is required to keep the sensor's output at a certain value. Source: M. Tondra, NVE

25.6.2010

GMR bridge sensor

GMR resistors configured as a Wheatstone bridge sensor (NVE)

- R2, R3 are shielded
- R1, R4: field is concentrated by approx. D1/D2

Still has nonlinear response unlike AMR bridge (NVE) $^{0+}_{2.5}$

25.6.2010

Advantages of magnetoresistors

Compared to Hall sensors:

- high sensitivity
	- for position sensors: magnet may be cheaper or smaller or airgap higher
	- for magnetic field sensors: higher accuracy
- no piezo effect
- higher operational temperatures

Giant magnetoimpedance effect Based on $Z \sim \delta \sim \mu \sim B$, Works on MHz frequencies Problems: perming temperature dependence (30nT/K) even response (need bias)

25.6.2010

GMI curve

25.6.2010

Temperature drift

25.6.2010

Double-core GMI

EVROPSKÁ UN

25.6.2010

Fluxgate sensors

Classical fluxgates: precise, but expensive (CTU Prague)

Most sensitive room-temperature magnetic sensors

Based on non-linear magnetization characteristics of ferromagnetic core. Measure up to 1 mT with 100 pT resolution

25.6.2010

Fluxgate principle

- Ferromagnetic core - non-linear B-H
- Excitation and sensing coil
- Core is periodically saturated by I_{exc} , µ drops to 1 twice each period
- Measured B_0 causes 2nd harmonics in V_{ind}

Fluxgate principle

- In absence of external field, magnetisation is symmetrical
- External measured field causes assymetry – detected in induced voltage

25.6.2010

Basic types of fluxgate

25.6.2010

Orthogonal Fluxgate

25.6.2010

Fluxgate magnetometer

25.6.2010

Parameters of fluxgate sensors

25.6.2010

Low-noise fluxgate sensor

25.6.2010

Temperature offset drift of Oersted sensor

25.6.2010

Offset recovery after temperature shock

Sensitivity tempco

Temperature [deg C]

25.6.2010

Crossfield effect

25.6.2010

Micro-fluxgate sensors

(in development)

- flat coils
- electrodeposited core or amorphous strips
- electronics on chip
- cheap
- resolution still higher than MR

Shizuoka University

25.6.2010

Flat coils

25.6.2010

Two-axial sensor with flat coils

25.6.2010

core

25.6.2010

Microfluxgate: Large field characteristics

Hysteresis and perming of the single-core sensor in the 400 mT range

Hysteresis and perming of the sensor with double-sided core

25.6.2010

Present limitation of microfluxgate: 80 nT p-p noise

25.6.2010

- Proton magnetometer (NMR – Nuclear Magnetic Resonance)
- Overhauser
- Optically pumped Cesium

All resonance magnetometers are scalar

25.6.2010

Proton magnetometer

- based on precession frequency of proton $\omega = \gamma B$ 42 MHz/T ... 42 mHz/nT
- usually free precession after polarization switched off
- absolut precission
- sensitive to gradient and EMC
- slow (1 sec)
- requires 10 ml to 500 ml volume difficult miniaturization

Overhauser magnetometer

Variation of proton magnetometer

- Based on dynamic nuclear polarization: from electrons to protons
- 0.1 nT resolution 0.5 nT absolute accuracy
- Resistant to field gradients and EMC

source: GEM

25.6.2010

25.6.2010

Optically pumped magnetometers

- Cesium, Potassium, Helium
- Based on ESR (electron spin resonance) or Zeeman splitting
- highest resolution: 7Hz/nT
- Requires lamp + RF source

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

source: GEM

Optically pumped magnetometers

- 0.2 nT absolute accuracy
- 7 pT resolutin @ 10 Hz sampling

Potassium (GEM) Cesium (Geometrics)

1 nT heading error

Precise fluxgate magnetometers

O.V.Nielsen, J.R.Petersen, F.Primdahl, P.Brauer, B.Hernando, A.Fernandez, J.M.G.Merayo, P.Ripka: Development, construction and analysis of the 'Orsted' fluxgate magnetometer Meas. Sci. Technol. 6 (1995), 1099-1115.

P. Ripka, F. Primdahl, O.V. Nielsen, J.R. Petersen, A.Ranta: AC magnetic field measurement using the fluxgate, Sensors and Actuators A, 46-47 (1995), pp. 307-311

25.6.2010

Testing and calibration

- Precise coil systems + current sources
- **Shieldings**
- Non-magnetic thermostats
- Large non-magnetic facilities

25.6.2010

Shieldings and calibration coils

25.6.2010

Resources

- www.nve.com (GMR)
- www.Sentron.ch (vertical Hall)
- www.ssec.honeywell.com/magnetic/ (AMR)
- www. Micronas.com (Hall)
- www.Infineon.com (Siemens: Hall, GMR)
- www.semiconductors.Philips.com/automotive/sensors_discretes (AMR)
- www.Geometrics.com (resonant magnetometers)
- measure.feld.cvut.cz/groups/maglab (fluxgate)
- P. Ripka (ed.): Magnetic sensors and Magnetometers Artech, 2001,www.artechouse.com
- Tumanski S, Thin film magnetoresistive sensors, IOP (2001) ISBN 075030702
- Popovic, R.S., Hall Effect Devices, Bristol: Adam Hilger, 1991.

25.6.2010

OSTATNÍ APLIKACE

25.6.2010

Applications: Metal detectors

Finding small objects: mines, coins, golden nuggets..

portable instruments… similar to NDT

Finding large and deep objects: scanning, sensor fields … -> geophysical methods, image analysis, recognition

25.6.2010

Testing fields of European Comission in Ispra, Italy

25.6.2010

Gauss laboratory, Ispra

Sensor footprint

25.6.2010

ERW – explosive remnants of war

- Mines and Booby traps
	- AP pressure mines
	- Tripwire activated AP mines
	- AT mines often protected by AP
		- Active magnetic methods (AC metal detectors) eddy currents
		- GPR
		- Sniffing of explosive
- Small UXO (unexploded ordnance): projectiles, sub-munition,
- Deeply burried ERW mainly bombs
	- Active AC magnetic methods
	- Passive magnetic methods: DC magnetometers up to 5 m

25.6.2010

PMN antipersonnel mine

25.6.2010

Small fragmentation bomb (sub-munition)

25.6.2010

Humanitarian demining

- HD: all explosive items must be removed or destroyed to a recorded depth.
- military demining: under time pressure, small losses acceptable

25.6.2010

Metal detectors: working principles

• **Pulsed induction**

- Ebinger 420GC
- Guartel MD8
- Minelab F1A4 and F3
- Schiebel AN19 (PSS12)
- Vallon 1620 and VMH2.

• **Continuous wave**

- CEIA MIL D1
- Foerster Minex 2FD
- Ebinger 420SC

• **(DC)Magnetometers: fluxgate, Cesium**

25.6.2010

Pulsed induction detectors

1-coil-systems,

Figure 4.3: Magnetic field measured from a Vallon VMH2 detector

370 μs pulse width 225 Hz repetition freq.

25.6.2010

Ground compensation

soil signal decays after 20 μs Advanced methods: processing multiple samples and/or using excitation pulses of different lengths.

25.6.2010

signals as a function of time

Förster Minex 2FD 4500 Institute for Geophysics & Meteorology, Cologne

Complex (Impedance) Plane representation

2 or 3 coils:

compensation of the primary field with differencial receiver-coils or bucking coils

Sorce: Jörn Lange,

25.6.2010

Basic principle

25.6.2010

Basic principle

$$
V_2(\omega) = -j\omega M_{12}I_1 = \omega^2 M_{12}M_{01}\frac{R - j\omega L}{R^2 + \omega^2 L^2}I_0
$$

Response function

$$
F = V_2(\omega) / \omega = \omega M_{12} M_{01} \frac{R - j\omega L}{R^2 + \omega^2 L^2} I_0 = \beta \left(\frac{j\alpha}{1 + j\alpha} \right)
$$

Where *R* ^ω*L* is response parameter for "first order object"

and
$$
\alpha = \sigma \mu \omega a^2
$$
 for metal sphere of diameter a

25.6.2010

Response function

EVROPSKÁ UI

ideal response and the state of the 12" shell

Chilaka 2004

25.6.2010

If the receiver is set up to reject signals of a certain phase the soil signal in this case will be ignored. Even better ground compensation can be achieved by using two or more frequencies.

Continuous wave detector 2 400 Hz + 19 200 Hz.

Figure 4.4: Magnetic field measured from a Foerster Minex 2FD 4.500 detector

25.6.2010

Magnetic and conductive soils

Many places Susceptibility 10⁻⁶ to 10⁻³ ... ferrites and other Conductivity .. Salt water

"Difficult soils"

Bosnia, Laos, …

Frequency dependent susceptibility

- mainly due to superparamagnetic nanoparticles

25.6.2010

Soil characterisation in time domain

Neel theory of superparamagnetic isolated particles: 1/t time response

25.6.2010

Soil characterisation in frequency domain

25.6.2010

Frequency-domain versus time-domain

- Time-domain detectors always use pulsed field excitation.
- Frequency-domain detectors: usually continuous wave fields

25.6.2010

Static and dynamic modes

'dynamic mode' detectors:

the alarm turns off after a few seconds

- can help when working in the presence of constant background disturbance, such as alongside a metal rail or fence or when attempting to locate a small AP mine in the vicinity of a large metal-cased AT mine.
- Requires experienced operator
- Dynamic: Guartel MD8, Minelab F1A4 and Vallon detectors
- Selectable Static-dynamic: Ebinger 421GC

Single versus double-D (differential, gradient) receive coils

can also be used beside rails and metal fences

CEIA MIL D1 Foerster Minex 2FD Guartel MD8 detectors.

25.6.2010

Size of the coil

- Small objects small coil
- Deep objects large coil

Typical diameters:

Demining detector: 20 cm UXO detector: 1 m

25.6.2010

Large-loop detector

Ebinger UPEX 740 M

Geonix EM61

25.6.2010

CEIA UXO detector

25.6.2010

The modular system
from a vehicular platform

25.6.2010

Finding large and/or deep objects

• AC methods:

require artificial source: big coils, 100 A sensing coils: up to 10 kg Can detect conducting objects

• DC methods:

use Earth's field Can detect only ferromagnetic objects

DC methods

UXO location

- 155 mm projectile 1.5 m deep ... 10 to 50 nT
- $-$ bomb 6 m deep ... 1 to 5 nT

1 nT in 50 000 nT ~ 20 ppm

Vectorial sensors: angular stability 0.001 deg \sim 0.35 nT

25.6.2010

DC Magnetometers

Vectorial:

- Fluxgate
	- Ebinger Magnex
	- Foerster Ferex
	- Schiebel Dimads (3-axis)

Scalar:

- **Optically pumped: Cesium vapour**
- Proton, Overhauser

Why fluxgate and not Hall, AMR, GMR, SDT, GMI..

Classical fluxgates:

Fluxgates: most precise magnetic sensors

Based on non-linear magnetization characteristics of ferromagnetic core.

Measure up to 1 mT with 100 pT resolution (10 pT)

10 ppm linearity

25.6.2010

Ebinger Magnex

25.6.2010

25.6.2010

Gradiometer suppresses interferences

Foerster Ferex

25.6.2010

Work nice in Europe, problems in Singapore

Vertical Component [nT] for 2000.0

IGRF 2000 (n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Contour interval is 2000 nT

25.6.2010

Fluxgate object locator DIMADS

Schiebel Austria, sensors from Czech Technical University

25.6.2010

Geometrics Cesium magnetometer

25.6.2010

STANFORD UNIVERSITY ENVIRONMENTAL TEST SITE **VERY HIGH RESOLUTION CESIUM MAGNETOMETER DATA** Collected using a G-858 Horizontal Gradiometer on a Plastic Cart - Shaded Relief Map

Buried Drums and Pipes - 1 meter to 3 meters Depth February 1999 - Geometrics, Inc.

25.6.2010

Geometrics Multi-Sensor Towed Array Detection System (MTADS

8 Cesium magnetometers

(3) modified Geonics EM-61 time domain electromagnetic (TDEM) sensors

25.6.2010

Other explosive remnants of war detection methods

- Ground-penetrating radar (GPR)
- Electrical impedance tomography
- X-ray backscatter detection
- Infrared and multi-spectral detection
- Acoustic detection
- Detecting explosives

25.6.2010

Explosive detecting dogs (EDDs)

A: to run dogs over the suspect area,

B: to take air sample filters in a suspect area and present the filters to dogs later.

Also rats and insects (bees, vasps)

25.6.2010

Ground-penetrating radar (GPR)

- dielectric contrast necessary (not plastic mines in dry sand)
- short-wavelength radar waves needed to find small mines (over 800 MHz frequency) do not penetrate wet soil very well.
- Good for metal objects

New mine detectors: Eddy currents + GPR

GPR imaging system

Noggin 1000 (Sensors and Software Inc. http://www.sensoft.ca)

25.6.2010

Dual technology detectors

AN/PSS-14 [: dual techno](http://serac.jrc.it/publications/pdf/metal_detector_handbook.pdf)logy, audio output

CyTerra Corp. (radar part) http://www.cyterra.com **and MineLab (metal detector part)**

Also Vallon VMR-1

25.6.2010

APPLICATIONS

25.6.2010

Applications II

- Detection and recognition of vehicles (incl. submersible)
- Detection frames and other sensors for border security
- Magnetic labels and anti-theft system
- Navigation systems
- Magnetic tracking
- Distance measurement
- Distributed sensors and sensor areas

25.6.2010

Detection and recognition of vehicles

Vehicles can be identified usig magnetic signature

The same technology is used for detection of ferromagnetic bodies

Magnetic field of Skoda car measured by 3-axis CTU fluxgate under the road surface

Detection frames and other sensors for border security

Eddy-current technollogy - multi-pulse Multi-zone

Ceia, Vallon, ...

25.6.2010

Magnetic labels and anti-theft system

DRI MENTINATION IN Williams ... Sensor **Bias** $~\sim$ 40 mm

www.vacuumschmelze.de

25.6.2010

Aplication: Compass

25.6.2010

Fluxgate compass: 0.05 deg accuracy

25.6.2010

Micro-fluxgate sensors

(in development)

- flat coils
- electrodeposited core or amorphous strips
- electronics on chip
- cheap
- resolution still higher than MR

Shizuoka University

25.6.2010

AMR Compass: Honeywell

Magnetic compass + inclinometers = backup for GPS

Honeywell 3-axis AMR magnetometer with digital output

25.6.2010

AMR Compass: Our experimental system

AMR modules with HMC100X, HMC102X, KMZ51

25.6.2010

AMR compass system

EVROPSKÁ UN

25.6.2010

AMR compass system

25.6.2010

Obstacles in compass application

- Crossfield sensitivity
- Orthogonality of XYZ sensors
- Horizontality (knowledge of tilt)
- Angular deviations: g sensors

B sensors reference directions

• Offset, perming, temperature drifts of sensors

Crossfield error - simulation

Crossfield error: possible solutions

- Feedback compensation
	- power consumption
	- limited bandwidth
	- precision?
- Numerical corrections
	- is the formula precise?
	- how precisely we know Bs?

 $B_S + B_C$ $V = \frac{a.B}{a}$ $=\frac{a}{\sqrt{a}}$

25.6.2010

Crossfield error after numerical correction effect of bad estimate of Bs (model)

Error due to non-orthogonality

25.6.2010

Error due to non-horizontality

Synth. Data: Mag Pitch 0 Roll 0..5 not corrected

Azimuth Ref [deg]

Angular deviations

EVROPSKÁ UN

25.6.2010

A: rotation in roll … accelerometers

25.6.2010

A: rotation in roll … magnetic sensors

25.6.2010

Total error

Error in azimuth during rotation in azimuth

25.6.2010

Total error

Error in azimuth during change in roll

25.6.2010

Magnetic tracking – moving sensors

Translation Range : 3 m x 3 m

Static Accuracy Position: 1.5 cm RMS

Static Accuracy Orientation: 1.0° RMS /www.ascension-tech.com/

25.6.2010

Magnetic tracking – moving marker

Fig. 1. Schematic diagram for the motion capturing system.

Hashi et al, 2004)

25.6.2010

25.6.2010

Magnetic tracking – moving marker

Fig. 2. Photograph of LC resonant marker with high permeability ferrite core.

Hashi et al, 2004)

Dipole source

$$
B_r = \frac{2}{10^7} \frac{m_m}{r^3} \cos \phi
$$

$$
B_s = \frac{1}{10^7} \frac{m_m}{r^3} \sin \phi
$$

25.6.2010

Distance measurement

25.6.2010

Distance measurement in vivo

25.6.2010

References

- P. Ripka (ed.): Magnetic sensors and Magnetometers Artech, 2001,www.artechouse.com
- Guelle, D., Smith, A., Lewis, A., and T. Bloodworth (2003): Metal Detector Handbook for Humanitarian Demining European Communities 2003, ISBN 92-894-6236-1Fulltext available at http://serac.jrc.it/publications/pdf/metal_detector_handbook.pdf
- J. Dirscherl, C. Bruschini: Metal Detectors Catalogue 2005 Geneva International Centre for Humanitarian Demining, ISBN 2-88487-009-1 Available at www.gichd.ch

