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Obsah přednášky

• Rozsah měřených polí

• Typy magnetických senzorů

• Základní principy a nové trendy:
– Polovodičové senzory

– XMR

– Fluxgate

– Resonanční senzory

– Indukční cívky

….
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Motivation: applications

The Earth’s field: total 50 µT, horizontal 20 µT
• Compass

– 1 deg ~ 350 nT  ... makes  17 m error in 1 km

– 0.1 deg ~ 35 nT 

– gimballing error 

• UXO location
– 155 mm projectile 1.5 m deep ... 10 to 50 nT

– bomb 6 m deep ...  1 to 5 nT

1 nT in 50 000 nT ~ 20 ppm 
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Typical daily variations of the Earth’s field
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Magnetic sensors: basic types

• Magnetic field sensors
– semiconductor

– ferromagnetic

– other (optical, resonant, SQUID…) 

25.6.2010

6



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Scalar
Measure the size of B (“total 

field B”)

only resonant sensors

Vector
Measure the projection 

of B into the sensitive axis

• single-axis

• tri-axial

most 

magnetic sensors

Magnetic field sensors

222
zyx BBBB ++=
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Tri-axial sensors: compass

X (forward)

Bx

Bz

By

Earth’s Field vector B

Z (down)

Y
(right)

Horizontal componentα

α = Azimuth or Heading
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AC
Measure only changing field:

induction coils

Vi .. Induced voltage
Φ .. Magnetic flux
A .. Coil area 
N .. Number of turns

DC

Measure DC and AC fields

most 
magnetic sensors

( )NAB
dt
d

dt
dVi −=
Φ

−=

Magnetic field sensors: DC and AC
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Basic sensor specifications

• FS range, linearity, hysteresis

• TC (“tempco”) of sensitivity

• Offset, offset tempco and long-term stability

• Perming (= null change after magnetic shock)

• Crossfield sensitivity

• Noise 
– PSD , rms  or p-p value

• Resistance against environment
– temperature, humidity, vibrations

25.6.2010
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Types of magnetic field sensors

• Semiconductor sensors (Hall, …)

• Ferromagnetic magnetoresistors (AMR, GMR, …)
– Resonant magnetometers (Proton, Cesium, ...) 

– SQUIDs (LTS + HTS)

– Induction coils, rotating coils

– Optical (Fibre optic, ... )

– Fluxgate 

• Other principles (GMI, magnetoelastic, …) 

25.6.2010
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Magnetic field magnitudes

100 T Pulse field

10 T Superconducting magnet

2 T Electromagnet

0.5 T Surface of strong perm. magnet (NdFeB)

0.1 T Surface of cheap magnet (ferrite)

10 mT Power cable

50 µT Earth’s field

1 µT Vehicle
10 fT Human brain
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pTfT nT µT mT T

Induction Coils

Fluxgate

ResonantSQUID

Hall

Magnetoresistors

Magnetooptical

Range
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Basic rules

Dipole field (from small objects)

B ∼ 1/r3

Long iron pipe

B ∼ 1/r2

Long straight current conductor 

B ∼ 1/r

25.6.2010
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Semiconductor magnetic sensors

• Hall 
– integrated

– GaAs, Si, (Ge)

– non-plate: vertical, cylindrical

• Semiconductor magnetoresistors

• Exotic
(magnetotransistors, magnetodiodes,

rotating current domain, ...)
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Permalloy Flux concentrators

Cylindrical Hall device with integrated 
magnetic flux concentrators

(Sentron AG)

Used for Hall and MR
Increase sensitivity
Possible problems:

• TC of sensitivity

• perming

• linearity

25.6.2010
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InSb Hall element with ferrite field 
concentrator 

(Asahi Kasei Electronic HW series).
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Magnetic force lines of field concentrators 
for a thin-film Hall sensor

(FEM simulation) - courtesy of Asahi Kasei Electronic
25.6.2010
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Semiconductor Magnetoresistors

www.murata.com

2%/°C 
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AMR: anisotropic magnetoresistance

• Permalloy thin film strip deposited on a silicon wafer 
magnetized in x direction

• HY rotates magnetisation M → R changes by 2%-3%

HY

25.6.2010
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AMR: linearisation

Bad idea:

Shifting the working point

by bias field 

Good idea:

Barber-pole Al  bars
deflect the current by 450

(Honeywell)

25.6.2010
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AMR bridge sensor

Philips KMZ
Full bridge made of 
meandered resistors 
with barber-pole 
strips

25.6.2010
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Noise of AMR
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Noise of AMR
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AMR: flipping

Unwanted change of strip 

permanent magnetization may 

distort the sensor characteristic.

Periodical saturation of

the permalloy strips is the cure

Characteristics of Philips KMZ 10
after positive [+] and negative [-] flip 
P.F. is characteristics for periodicalflipping

+
-

P.F.
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AMR: flipping

Flipping: 

+ decreases offset

+ reduces perming

+ increases sensitivity

- increases power consumption

Honeywell AMR sensor

with integrated flat flipping coil

25.6.2010
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KMZ 51 – virgin accuracy

25.6.2010
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Flipped + compensated KMZ 51 - overall 
accuracy

Linearity error of flipped & compensated AMR magnetometer

-80

-60

-40

-20

0

20

40

60

80

-400 -300 -200 -100 0 100 200 300 400

Magnetic flux density [uT]

Li
ne

ar
ity

 e
rr

or
 [p

pm
 F

S]

25.6.2010

28



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

KMZ 51 - overview

• no flipping:
– Linearity and hysteresis: 

+/- 1 % FS (+/- 300uT)

– Tempco. OFFSET 
–90 nT/K

– Tempco. SENSITIVITY
–585 ppm/K 

• flipping & feedback:
– Linearity and hysteresis: 

+/- 40ppm FS (+/-300uT)

– Tempco. OFFSET 
approx. 2.1 nT/K

– Tempco. SENSITIVITY
approx. 20ppm/K

+ noise: 5 nT/sqrHz @ 1Hz

no statistics!

25.6.2010
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HMC 1001
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HMC 1001

flipping ON
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HMC 1001 – offset drift 

nT/ 50 OC x y z

No flipping 7 000 3 500 3 700

flipped 250 200 50
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32



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

AMR vs. Hall and fluxgate

Hall with field concentarors AMR
(KMZ 51)

AMR
flipped+feedback

fluxgate

linear range 5 mT 300 µT 300 µT 0. 5 mT

size 6 mm 6 mm 6 mm 30 mm

linearity 0.1 < 0.2 % 1 % 40 ppm 1 ppm

sensitivity TC 200 ppm/K 600 20 30 

offset@250C 50 µT < 10 µT < 1 µT 5 nT

offset TC 600 nT/K 100 nT/K 2 nT/K 0.1 nT/K

resolution 1 µT 10 nT(1 nT) 10 nT 100 pT

perming, hyst. 1 µT (?) 300 nT 10 nT < 1 nT

BW 100 kHz 100 kHz 100 Hz 1 kHz

power cons. 55 mW 30 mW 100mW 150 mW

25.6.2010
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GMR:  Giant Magnetoresistance

Spin - dependent scaterring:

Resistance of two thin ferromagnetic layers separated by a thin 
nonmagnetic conducting layer can be altered by changing 
the moments of the ferromagnetic layers from parallel to 

antiparallel.

B

I
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Common GMR structures

A: Spin valve
B: Sandwich
C: Multilayer

technology developed

for reading heads

25.6.2010
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GMR sandwich

Sensitive, but not good
for linear sensors
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GMR: spin valve
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SDT (spin-dependent tunelling) 
magnetoresistor

source: Mark Tondra, NVEA cross section of the SDT structure. 
The vertical scale is exaggerated so the thicknesses are visible. 
The lateral dimensions of the tunnel junctions range from 0.1 µm to 1000 µm. 

25.6.2010
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SDT (spin-dependent tunelling) 
magnetoresistor

source: Mark Tondra, 
NVE

The magnitude of the SDT magnetoresistance can be greater than 40% 
compared to ~10% for spin valves.
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Biased SDT sensor

A common magnetic tool for getting a linear response from almost any material 
is to incorporate a feedback coil and measure the current in this coil that is 
required to keep the sensor’s output at a certain value. source: M. Tondra, NVE
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GMR bridge sensor 

GMR resistors configured as a 
Wheatstone bridge sensor 
(NVE)

• R2, R3 are shielded

• R1, R4: field is concentrated 
by approx. D1/D2

Still has nonlinear 

response

unlike AMR bridge
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Advantages of magnetoresistors

Compared to Hall sensors:

• high sensitivity
– for position sensors: magnet may be cheaper or 

smaller or airgap higher

– for magnetic field sensors: higher accuracy

• no piezo effect

• higher operational temperatures

25.6.2010
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GMI

Giant magnetoimpedance effect

Based on Z ~ δ ~ μ ~ B, 

Works on MHz frequencies

Problems: perming

temperature dependence (30nT/K)

even response (need bias)

25.6.2010
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GMI curve
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Temperature drift

Impedance and resistance dependence on temperature
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Double-core GMI

resulting characteristics
25.6.2010
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Fluxgate sensors

Classical fluxgates:

precise, but expensive (CTU 
Prague)

Most sensitive room-temperature 
magnetic sensors

Based on non-linear 
magnetization characteristics of 
ferromagnetic core.
Measure up to 1 mT
with 100 pT resolution

25.6.2010
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Iexc(t)

µ(t)

Vind

B(t)
Bo

 

N

• Ferromagnetic core
- non-linear B-H

• Excitation and sensing 
coil 

• Core is periodically 
saturated by Iexc,
µ drops to 1
twice each period

• Measured B0 causes 
2nd harmonics in Vind

Fluxgate principle

25.6.2010
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• In absence of external 
field, magnetisation is 
symmetrical 

• External measured 
field causes assymetry 
– detected in induced 
voltage

B(Φ
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H t
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Fluxgate principle
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Basic types of fluxgate

• Double core suppresses first harmonics

25.6.2010
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Orthogonal Fluxgate

25.6.2010
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Fluxgate magnetometer

25.6.2010
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Parameters of fluxgate sensors

Parameter Top Standard
Sensitivity 30 μT / nT
Range 10 mT 200 μT
Linearity error 10 ppm 100 ppm
Tempco of sensitivity 10 ppm / 0C 50 ppm / 0C
Crossfield error for 50 μT field < 1 nT 5 nT

Temp. offset drift 50 pT / 0C 0.2 nT / 0C
Perming after 10 mT shock < 1 nT < 5 nT
Noise (rms 50 mHz..10 Hz) 5 pT 100 pT
Long-term offset stability 2 nT/year 5 nT/8 hours

Bandwidth 10 kHz 20 Hz
Temp. range -60 ..+2000C -20 ..+70 0C
Power consumprion 1 mW 100 mW
Size 2 mm 30 mm

25.6.2010
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Low-noise fluxgate sensor

25.6.2010
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Temperature offset drift of Oersted sensor
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Offset recovery after temperature shock
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Sensitivity tempco

25.6.2010
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Crossfield effect

25.6.2010
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Micro-fluxgate sensors

(in development)

• flat coils

• electrodeposited core or 
amorphous strips

• electronics on chip

• cheap

• resolution still higher 
than MR

Shizuoka University

25.6.2010
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Flat coils

Core

Flat coils

B0
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Two-axial sensor with flat coils

Iexc

Vix

x
y

Uind y

excitation coil

x-axis pick-up
coils

pair of cores for x axis

Bexc

B0yB0x

Bexc

Bexc
Bexc
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Microfluxgate sensor with symmetrical 
core
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Present limitation of microfluxgate: 80 nT 
p-p noise
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Resonance sensors 

• Proton magnetometer 
(NMR – Nuclear Magnetic Resonance)

• Overhauser 

• Optically pumped – Cesium

All resonance magnetometers are scalar

25.6.2010
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Proton magnetometer

• based on precession frequency of proton ω = γB
42 MHz/T  ... 42 mHz/nT

• usually free precession after polarization switched off

• absolut precission 

• sensitive to gradient and EMC

• slow (1 sec)

• requires 10 ml to 500 ml volume – difficult miniaturization

25.6.2010
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Overhauser magnetometer

Variation of proton magnetometer

Based on dynamic nuclear polarization: from electrons 
to protons 

0.1 nT resolution 0.5 nT absolute accuracy

Resistant to field gradients and EMC

source: GEM

25.6.2010
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Optically pumped magnetometers

• Cesium, Potassium, Helium

• Based on ESR (electron spin resonance) or 
Zeeman splitting

• highest resolution: 7Hz/nT

• Requires lamp + RF source
source: GEM
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Optically pumped magnetometers

• 0.2 nT absolute accuracy

• 7 pT resolutin @ 10 Hz sampling

Potassium (GEM) Cesium (Geometrics)

• 1 nT heading error
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O.V.Nielsen, J.R.Petersen, F.Primdahl, P.Brauer, B.Hernando, A.Fernandez, J.M.G.Merayo, P.Ripka:
Development, construction and analysis of the 'Orsted' fluxgate magnetometer
Meas. Sci. Technol. 6 (1995), 1099-1115.
P. Ripka, F. Primdahl, O.V. Nielsen, J.R. Petersen, A.Ranta: AC magnetic field measurement using the 
fluxgate, Sensors and Actuators A, 46-47 (1995), pp. 307-311

Precise fluxgate magnetometers
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Testing and calibration

• Precise coil systems + current sources

• Shieldings

• Non-magnetic thermostats

• Large non-magnetic facilities
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Shieldings and calibration coils
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Resources

• www.nve.com (GMR)
• www.Sentron.ch (vertical Hall)
• www.ssec.honeywell.com/magnetic/  (AMR)
• www. Micronas.com (Hall)
• www.Infineon.com (Siemens: Hall, GMR)
• www.semiconductors.Philips.com/automotive/sensors_discretes  (AMR)
• www.Geometrics.com  (resonant magnetometers)
• measure.feld.cvut.cz/groups/maglab  (fluxgate)

• P. Ripka (ed.): Magnetic sensors and Magnetometers 
Artech, 2001,www.artechouse.com

• Tumanski S, Thin film magnetoresistive sensors, IOP (2001) ISBN 075030702
• Popovic, R.S., Hall Effect Devices, Bristol: Adam Hilger, 1991.  
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OSTATNÍ APLIKACE
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Finding small objects: mines, coins, golden nuggets.. 

portable instruments… similar to NDT

Finding large and deep objects: scanning, sensor fields …
-> geophysical methods, image analysis, recognition

Applications: Metal detectors
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Testing fields of European Comission in 
Ispra, Italy
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Gauss laboratory, Ispra

Sensor footprint
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ERW – explosive remnants of war

• Mines and Booby traps
– AP pressure mines
– Tripwire activated AP mines
– AT mines – often protected by AP

• Active magnetic methods (AC metal detectors) – eddy currents
• GPR
• Sniffing of explosive

• Small UXO (unexploded ordnance): projectiles, sub-munition, 
…

• Deeply burried ERW – mainly bombs 
• Active AC magnetic methods
• Passive magnetic methods: DC magnetometers – up to 5 m
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PMN antipersonnel mine
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Small fragmentation bomb (sub-munition)
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Humanitarian demining

• HD: all explosive items must be removed or 
destroyed to a recorded depth.

• military demining: under time pressure, small 
losses acceptable
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Metal detectors: working principles

• Pulsed induction
– Ebinger 420GC
– Guartel MD8
– Minelab F1A4 and F3
– Schiebel AN19 (PSS12)
– Vallon 1620 and VMH2.

• Continuous wave
– CEIA MIL D1
– Foerster Minex 2FD 
– Ebinger 420SC

• (DC)Magnetometers: fluxgate, Cesium
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Pulsed induction detectors

1-coil-systems, 
measurements in TD 10-5s - 10-3s. 

370 μs pulse width
225 Hz repetition freq.
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Ground compensation

soil signal decays after 20 μs
Advanced methods: processing multiple samples 

and/or using excitation pulses of different lengths.
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Continuous wave detector

Sorce: Jörn Lange,

Institute for Geophysics & Meteorology, CologneFörster Minex 2FD 4500

2 or 3 coils: 
compensation of the primary field with 
differencial receiver-coils or bucking coils
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Basic principle
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Basic principle
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Where 
R
Lωα = is response parameter for “first order object”

and 2aσµωα = for metal sphere of diameter a
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Response function 

ideal response 12” shell

Chilaka 2004
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If the receiver is set up to reject signals of a certain phase
the soil signal in this case will be ignored. Even better
ground compensation can be achieved by using two or
more frequencies.
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Continuous wave detector 2 400 Hz + 19 200 Hz.
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“Difficult soils”

Bosnia, Laos, …

Frequency dependent susceptibility 

- mainly due to superparamagnetic nanoparticles

Many places
Susceptibility 10-6 to 10-3 … ferrites and other 
Conductivity .. Salt water

Magnetic and conductive soils
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Soil characterisation in time domain
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Neel theory of superparamagnetic isolated particles: 1/t time response
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Soil characterisation in frequency domain
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Frequency-domain versus time-domain

• Time-domain detectors always use pulsed field
excitation. 

• Frequency-domain detectors: usually  continuous 
wave fields
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Static and dynamic modes

‘dynamic mode’ detectors:

the alarm turns off after a few seconds
• can help when working in the presence of constant background 

disturbance, such as alongside a metal rail or fence or when attempting to 
locate a small AP mine in the vicinity of a large metal-cased AT mine.

• Requires experienced operator

• Dynamic: Guartel MD8, Minelab F1A4 and Vallon detectors

• Selectable Static-dynamic: Ebinger 421GC
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Single versus double-D (differential, 
gradient) receive coils

CEIA MIL D1
Foerster Minex 2FD
Guartel MD8 detectors.

can also be used 
beside rails and
metal fences
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Size of the coil

• Small objects –
small coil

• Deep objects –
large coil

Typical diameters: 

Demining detector: 
20 cm

UXO detector: 1 m
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Large-loop detector

Ebinger UPEX 740 M
Geonix EM61
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CEIA UXO detector
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Finding large and/or deep objects

• AC methods: 
require artificial source: big coils, 100 A

sensing coils: up to 10 kg 

Can detect conducting objects

• DC methods: 
use Earth’s field 

Can detect only ferromagnetic objects
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DC methods

UXO location
– 155 mm projectile 1.5 m deep ... 10 to 50 nT

– bomb 6 m deep ...  1 to 5 nT

1 nT in 50 000 nT ~ 20 ppm 

Vectorial sensors: 

angular stability 0.001 deg ~ 0.35 nT 
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DC Magnetometers

Vectorial:

• Fluxgate
– Ebinger Magnex

– Foerster Ferex

– Schiebel Dimads (3-axis)

Scalar:

• Optically pumped: Cesium vapour

• Proton, Overhauser
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Why fluxgate and not Hall, AMR, GMR, 
SDT, GMI..

Classical fluxgates:
big and expensive (CTU Prague) Fluxgates: most precise magnetic 

sensors

Based on non-linear 
magnetization characteristics of 
ferromagnetic core.

Measure up to 1 mT
with 100 pT resolution (10 pT) 

10 ppm linearity
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Ebinger Magnex
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Grad
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Gradiometer suppresses interferences
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Foerster Ferex
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Work nice in Europe, problems in 
Singapore 
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Fluxgate object locator DIMADS
Schiebel Austria,
sensors from Czech Technical University
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Geometrics Cesium magnetometer
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Geometrics Multi-Sensor Towed Array 
Detection System (MTADS 

8 Cesium magnetometers

(3) modified Geonics EM-61 time domain 
electromagnetic (TDEM) sensors 
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Other explosive remnants of war detection 
methods

• Ground-penetrating radar (GPR)

• Electrical impedance tomography

• X-ray backscatter detection

• Infrared and multi-spectral detection

• Acoustic detection

• Detecting explosives
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Explosive detecting dogs (EDDs)

A: to run dogs over the suspect area,

B: to take air sample filters in a suspect area and 
present the filters to dogs later.

Also rats and insects (bees, vasps) 
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Ground-penetrating radar (GPR)

– dielectric contrast necessary (not plastic mines in dry sand)

– short-wavelength radar waves needed to find small mines 
(over 800 MHz frequency) do not penetrate wet soil very 
well.

– Good for metal objects

New mine detectors: Eddy currents + GPR

Primary:

Detect small metal 
objects

To reduce the response 
to clutter
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GPR imaging system

Noggin 1000 (Sensors and Software Inc.    http://www.sensoft.ca) 
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Dual technology detectors

AN/PSS-14 : dual technology, audio output

CyTerra Corp. (radar part) http://www.cyterra.com
and MineLab (metal detector part)

Also Vallon VMR-1
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APPLICATIONS
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Applications II

• Detection and recognition of vehicles (incl. submersible)

• Detection frames and other sensors for border security

• Magnetic labels and anti-theft system

• Navigation systems

• Magnetic tracking

• Distance measurement

• Distributed sensors and sensor areas
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Detection and recognition of vehicles

Vehicles can be identified 
usig magnetic 
signature

The same technology is 
used for detection of 
ferromagnetic bodies

Magnetic field of Skoda car
measured by 3-axis CTU fluxgate
under the road surface
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Detection frames and other sensors for 
border security

Eddy-current technollogy – multi-pulse

Multi-zone

Ceia, Vallon, …
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Magnetic labels and anti-theft system

Sensormatic/ Tyco Fire & Security 
Magnetoelastic labels
www.vacuumschmelze.de
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Aplication:  Compass
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Fluxgate compass: 0.05 deg accuracy
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Micro-fluxgate sensors

(in development)

• flat coils

• electrodeposited core or 
amorphous strips

• electronics on chip

• cheap

• resolution still higher 
than MR

Shizuoka University
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AMR  Compass: Honeywell

Honeywell 3-axis AMR 
magnetometer with digital output

X (forward)

Bx

Bz

By

Hearth

Z (down)

Y
(right)

Hnorthα

α = Azimuth or Heading

φ

θ

Forward
Level

roll

pitch

C
om

pa
ss

Right
Level

x
y

z

Magnetic compass + inclinometers

= backup for GPS
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AMR  Compass: Our experimental system 

AMR modules with HMC100X, HMC102X, KMZ51
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AMR compass system
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AMR compass system
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Obstacles in compass application

• Crossfield sensitivity

• Orthogonality of XYZ sensors

• Horizontality (knowledge of tilt)

• Angular deviations: g sensors
B sensors
reference directions

• Offset, perming, temperature drifts of sensors
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Crossfield error - simulation

Azimuth Error due to CrossAxis
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Crossfield error: possible solutions

• Feedback compensation
– power consumption 

– limited bandwidth

– precision?

• Numerical corrections
– is the formula precise?

– how precisely we know Bs?

CS BB
BaV
+

=
.
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Error due to non-orthogonality
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Error due to non-horizontality

Synth. Data: Mag Pitch 0 Roll 0..5 not corrected
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Angular deviations
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A: rotation in roll … accelerometers

Gx before and after correction (rotation in roll)
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A: rotation in roll …  magnetic sensors

Azimuth before and after correction (rotation in roll)
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Total error
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Total error
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Magnetic tracking – moving sensors

Translation Range : 3 m x 3 m  

Static Accuracy Position: 1.5 cm RMS 

Static Accuracy Orientation: 1.0° RMS /www.ascension-tech.com/

25.6.2010

143



I N V E S T I C E  D O  R O Z V O J E  V Z D Ě L Á V Á N Í

Magnetic tracking – moving marker

Hashi et al, 2004)
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Magnetic tracking – moving marker

Hashi et al, 2004)
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Dipole source
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Distance measurement

Distance - Induced Voltage
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Distance measurement in vivo
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