

Agent Applications in Production Planning

Jiří Vokřínek

22.3.2010

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

- Real problems constraints vs. standard problem definition
- Need of adding/relaxing problem constrains based on good understanding of the both real problem and solution methods
- Lot of planning algorithms in AI, but limited applicability to real problems
- Problems often computationally complex → AI approaches based on heuristics → non-trivial mapping to real problem
- Complex (non-explicit) functional and non-functional requirements

How to bridge the gap between real world problems and AI solutions?

	Real problems	Classic AI problems		
Optimization criteria	complex, multi-attribute	specific measure		
Constraints	Complex constraints, priorities, hard or soft, nonfunctional	explicitly defined, not conflicting		
Environment	non-deterministic, dynamic, decentralized, uncertain	usually solve deterministic, static, centralized version		
Performance	fast, stable, feasible sufficient solution	optimal solution, algorithm features proofs		
Deployment	data/system integration, reliability	experimental purposes		

- Decentralized approach
- Respects natural hierarchy of the system
- Based on hierarchical planning and decomposition principle
- Combination of planning and resource scheduling
- Allows using of wide variety planning strategies/heuristics
- Open system, high flexibility
- Reconfiguration in runtime
- Tight connection to simulation
- Based on
 - Problem decomposition
 - CNP allocation
 - Local optimization heuristics

- Modeling and simulation of production workflows and supply chain integration
- Methods based on modeling of factory departments, workshops, resources ...
- Various planning and optimization approaches balance between quality of solution and computational efficiency
- Incorporating external departments/suppliers into planning process (intra-enterprise/extra-enterprise planning)
- Flexible planning methods to cover uncertainty and dynamism of the real environment

Agent Based Production Planning

Production Planning/Scheduling

Production planning for manufacturing

- Production planning multi-agent system in pattern manufacturing
- Production feedback and dynamic replanning
- Optimal distributed schedule minimizing weighted delay of tasks
- Based on sub-tasks prioritization by critical path analyses
- Linking suppliers and collaborators building virtual enterprise
- EEAgents access from anywhere anytime (WEB, WAP, PDA)

ExtraPlanT UI [local]

19 18 🗉 🖸 대왕 48

Task Workshop Tools Help

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

_ 🗆 ×

Shop Floor Simulation

Shop floor simulation

- Agent-based resource modeling
- Production flow simulation
- Production unit performance models/breakdowns
- Input/output buffers, conveys
- Utilizing A-Globe platform with simulation

support

Visir

_ 🗆 🗙

60

01.01.2004 12:00:00.000 End Time: 01.01.2004 24:00:00.000 Window size [s]:

Formation of VO is mapping the collaboration request (business opportunity) to the set of partners

Uses Acquaintance model based on pair wise constant approximation

It is **sound** and **complete** for non-increasing pricing function Provides **any-time** solution

Partners	6	6	6	6	6	6	
Subtasks per partner	16	16	17	17	18	18	
All subtasks	32	32	34	34	36	36	
Task size	11	12	11	12	11	12	
Subtask coverage	3,00	3,00	3,00	3,00	3,00	3,00	
Deal Space	177 147	531 441	177 147	531 441	177 147	531 441	
Maximal model size	393 210	393 210	786 426	786 426	1 572 858	1 572 858	
Average Iteration in first Task	7,00	6,83	7,83	8,65	6,86	7,14	
Average Proposal Count in first Task	58,83	64,17	63,33	56,83	59,29	63,29	
Model size after 10 tasks	312	283	301	229	328	261	
Percent from Maximal model	0,0793	0,072	0,0383	0,0291	0,020854	0,016594	

Decision Support System

Business process modeling and simulation

- Intra-enterprise or supply-chain/network management
- Autonomous agents based modeling
 - Each actor (machine, team, division, company, etc.) is modeled separately to consider autonomous state, behaviors and capabilities, past performance and experience
- Collective simulation (what-if analysis)
 - Generation of random performance variations, statistical simulation based on Monte-Carlo method
- Agent based planning
 - Planning, scheduling and allocation is based on negotiation between agents using actor models

Logistics in disaster relief scenario

Dynamic non-deterministic environment

- Distributed planning planning in the mentioned environment is practically realizable only as a distributed process
- Distributed resource allocation integral part of the planning process is resource allocation both of the acting entities in the world and of the static resources
- Distributed plan execution and synchronization constituted distributed plan consisting of several personal plans has to be executed by the entities
- Implemented approach provides polynomial tasks allocation heuristics with complexity O(n^{2m}/2m) for m-level of planning hierarchy and n-agents in each level

Distributed Team Planning

Planner: agent based solution (polynomial)

- CNP-like allocation
- Local TSP heuristics
- Backtracking due to capacity constraints
- Delegation and reallocation strategies
- Continuous solution improvement using strategies adaptation
- Easy adaptation to other problems (m-TSP, k-TRP, ...) and custom constraints
- Robust to high degree of dynamism

Stable performance on all available benchmarking instances Error from optimal (best known) solution from 0 to 22%

