

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Introduction to Programming Autonomous Agents and Multi-agent Systems (short tutorial)

Peter Novák Agent Technology Center, Department of Cybernetics Czech Technical University in Prague

22nd March 2010

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky.

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Motivation & Scope How to program intelligent agents? Theoretical foundations Agent oriented programming languages Research outlook

Conclusion

${\sf Agenda}$

Motivation & Scope

Inteligent agents Cognitive agents Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming

languages

Research outlook

Conclusion

Motivation & Scope

Inteligent agents

Agenda

Motivation & Scope

Inteligent agents

Cognitive agents Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Definition 1 (intelligent agents). are artificial entities assumed to be *autonomous*, *proactive*, *reactive*, as well as *socially able*.

- **autonomy:** the agent acts without its user's intervention, *agent is not an object* (in OOP sense)
- proactiveness: the agent acts purposefully, i.e., towards reaching goals
 - **reactivity:** the agent is responsice to changes of the environment
- **social ability:** it is capable to communicate, coordinate and cooperate with its users and peers

Inteligent agents

Agenda

Motivation & Scope

Inteligent agents

Cognitive agents Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Definition 2 (intelligent agents). are artificial entities assumed to be *autonomous*, *proactive*, *reactive*, as well as *socially able*.

- **autonomy:** the agent acts without its user's intervention, *agent is not an object* (in OOP sense)
- proactiveness: the agent acts purposefully, i.e., towards reaching goals
 - **reactivity:** the agent is responsice to changes of the environment
- social ability: it is capable to communicate, coordinate and cooperate with its users and peers

communication \rightsquigarrow symbolic information processing!

Cognitive agents

Agenda

Motivation & Scope Inteligent agents Cognitive agents

Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Definition 3 (cognitive/knowledge intensive agent). employ cognitive processes, such as knowledge representation and reasoning as the basis for decision making and action selection. I.e., they construct and maintaining a *mental state*.

Definition 4 (mental state). agent's representation of the environment, itself, its peers, etc.

Example: Airport E-Assistant (Ape)

Agenda

Motivation & Scope Inteligent agents Cognitive agents Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Example: Airport E-Assistant (Ape)

Agenda

Motivation & Scope Inteligent agents Cognitive agents Example: Airport E-Assistant (Ape)

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

The robot guides and advices passengers at the airport.

- navigates through crowds, maintains energy level
- solves and responds to requests along the way
- **communicates** with the airport infrastructure, etc...

Motivation & Scope

How to program intelligent agents?

Agent program: action selection (+ state change) Hybrid architectures Hybrid architectures & agent-oriented programming languages

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

How to program intelligent agents?

Agent program: action selection (+ state change)

Agenda

Motivation & Scope

How to program intelligent agents?

Agent program: action selection (+ state change)

Hybrid architectures Hybrid architectures & agent-oriented programming languages

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

 $next_action = \mathcal{P}(perceptions \bigoplus \sigma)$

$$(\sigma' = \sigma \oslash perceptions)$$

reactive systems: $\sigma ightarrow \emptyset$

no/little past, difficult to implement *proactiveness* responsive, robust w.r.t. unexpected = *graceful degradation*

deliberative systems: $perceptions \rightarrow \emptyset$

weak responsiveness to the environment
 keeps context (future) = proactiveness, planning

+

Hybrid architectures

Agenda

Motivation & Scope

How to program intelligent agents? Agent program: action selection (+ state change)

Hybrid architectures

Hybrid architectures & agent-oriented programming languages

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

environment dynamics, graceful degradation \rightsquigarrow reactivity goals, social abilities \rightsquigarrow deliberation/planning

How to marry reactivity & deliberative features?

Hybrid architectures

Agenda	environment dynamics, graceful degradation \rightsquigarrow reactivity
Motivation & Scope How to program intelligent agents? Agent program:	goals, social abilities ~> deliberation/planning
action selection (+ state change) Hybrid architectures Hybrid architectures	How to marry reactivity & deliberative features?
& agent-oriented programming languages Theoretical foundations	Hybrid architectures!
Agent oriented programming languages Research outlook Conclusion	procedure AGENT-CYCLE SENSE $\downarrow \qquad \leftarrow PLAN$
	ACI

Hybrid architectures & agent-oriented programming languages

Agenda

Motivation & Scope How to program intelligent agents? Agent program: action selection (+ state change) Hybrid architectures Hybrid architectures & agent-oriented programming languages

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

<i>Architectures:</i> 1987: PRS 1988: IRMA 1991: Abstract BDI architecture 1994: INTERRAP	– incomplete – (Georgeff and Lansky) (Bratman, Israel and Pollack) (Rao and Georgeff) (Müller and Pischel)
Languages:	– incomplete –
1990: AGENT-0	(Shoham)
1996: AgentSpeak(L)	(Rao)
1996: Golog	(Reiter, Levesque, Lesperance)
1997: 3APL	(Hindriks et al.)
1998: ConGolog	(Giacomo, Levesque, Lesperance)
2000: JACK	(Busetta et al.)
2000: GOAL	(Hindriks et al.)
2002: Jason	(Bordini, Hubner)
2003: Jadex	(Braubach, Pokahr et al.)
2008: Behavioural State Machines/	Jazzyk (Novák)
2008: 2APL	(Dastani)

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Beliefs and goals Belief-Desire-Intention architecture CTL*: the language of the discourse I-System (cont.) Commitment strategies Operationalizing the **BDI** architecture Abstract BDI reasoning cycle Agent oriented programming languages

Research outlook

Conclusion

Theoretical foundations

Beliefs and goals

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Beliefs and goals

Belief-Desire-Intention architecture CTL*: the language of the discourse I-System (cont.) Commitment strategies Operationalizing the BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

(B)eliefs: reflect agent's *static* beliefs about its environment, itself, its peers, etc. (*now*)
 (D)esires: descriptions of situations the agent wants to bring about (*future*)

Dynamics:

automated planning: provides the connection from now to the future

Agent's *intentions* are considered to be reducible to (B) and (D).

Cohen & Levesque: Intention is a choice with commitment. 1990

Belief-Desire-Intention architecture

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical

foundations

Beliefs and goals Belief-Desire-Intention

architecture

CTL*: the language of the discourse I-System (cont.) Commitment strategies Operationalizing the BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

(B)eliefs: reflect agent's *static* beliefs about its environment, itself, its peers, etc. (*now*)

(D)esires: descriptions of situations the agent wants to bring about (*future*)

(I)ntentions: *partial plans of action that the agent is committed to execute in order to fulfill the goals*

Belief-Desire-Intention architecture

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical

foundations Beliefs and goals

Belief-Desire-Intention

architecture CTL*: the language of the discourse I-System (cont.) Commitment strategies Operationalizing the BDI architecture Abstract BDI

reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

(B)eliefs: reflect agent's *static* beliefs about its environment, itself, its peers, etc. (*now*)

(D)esires: descriptions of situations the agent wants to bring about (*future*)

(I)ntentions: *partial plans of action that the agent is committed to execute in order to fulfill the goals*

Explicit plans

(recipes for how to proceed from now to the future)

means-end reasoning ~>> reactive planning

- planning is not a must!
 - partial plans can be encoded in the design time

Bratman: Intentions, Plans, and Practical Reason. 1987 Rao & Georgeff: Modeling Rational Agents within a BDI-Architecture. 1991

Motivation & Scope

How to program intelligent agents?

Theoretical

foundations

Beliefs and goals

Belief-Desire-

Intention

architecture

CTL*: the language of the discourse

I-System (cont.)

Commitment

strategies

Operationalizing the

BDI architecture

Abstract BDI reasoning cycle

Agent oriented

programming languages

Research outlook

Conclusion

(generalized) computation tree logic:

branching time

- temporal modalities
- free mixing of temporal operators and quantifiers

$$\theta$$
 ::= $\mathbf{p} \mid \neg \theta \mid \theta \land \theta$

 $\varphi \quad ::= \quad \theta \mid \neg \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \varphi \mathcal{U} \varphi \mid \forall \varphi \mid \exists \varphi$

Motivation & Scope

How to program intelligent agents?

Theoretical

foundations

Beliefs and goals

Belief-Desire-

Intention

architecture

CTL*: the language of the discourse

I-System (cont.) Commitment

strategies Operationalizing the

BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

(generalized) computation tree logic:

- branching time
- temporal modalities

free mixing of temporal operators and quantifiers

$$\theta$$
 ::= $\mathbf{p} \mid \neg \theta \mid \theta \land \theta$

 $\varphi \quad ::= \quad \theta \mid \neg \varphi \mid \varphi \land \varphi \mid \bigcirc \varphi \mid \Diamond \varphi \mid \Box \varphi \mid \varphi \mathcal{U} \varphi \mid \forall \varphi \mid \exists \varphi$

I-System (cont.)

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations Beliefs and goals Belief-Desire-Intention architecture

CTL*: the language of the discourse

I-System (cont.)

Commitment strategies Operationalizing the BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

AI1: $GOAL(\alpha) \Rightarrow BEL(\alpha)$ (B-G compatibility)AI2: $INTEND(\alpha) \Rightarrow GOAL(\alpha)$ (G-I compatibility)AI3: $INTEND(does(\alpha)) \Rightarrow does(\alpha)$ (intentions lead to actions)AI4: $INTEND(\phi) \Rightarrow BEL(INTEND(\phi))$ (believing in intentions)AI5: $GOAL(\phi) \Rightarrow BEL(GOAL(\phi))$ (believing in goals)AI6: $INTEND(\phi) \Rightarrow GOAL(INTEND(\phi))$ (desiring intentions)AI7: $done(e) \Rightarrow BEL(done(e))$ (awareness of actions)AI8: $INTEND(\phi) \Rightarrow \forall \Diamond (\neg INTEND(\phi))$ (no infinite deferral)

Commitment strategies

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations Beliefs and goals Belief-Desire-Intention architecture CTL*: the language of the discourse I-System (cont.)

Commitment strategies

Operationalizing the BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

blind commitment: the agent maintains intentions until it actually believes that they are achieved $INTEND(\forall \Diamond \phi) \Rightarrow \forall (INTEND(\forall \Diamond \phi) \ \mathcal{U} \ BEL(\phi))$ $\rightsquigarrow I \ want \ \phi! \ (no \ care \ possibility \ to \ reach \ \phi)$

single-minded commitment: the agent maintains intentions as long as as it believes they are still achievable INTEND $(\forall \Diamond \phi) \Rightarrow \forall (INTEND(\forall \Diamond \phi) \mathcal{U} (BEL(\phi) \lor \neg BEL(\exists \Diamond \phi)))$ \rightsquigarrow I want ϕ if it is possible! (regardless of its desires/needs)

open-minded commitment: the agent maintains intentions as long as they are still its goals INTEND $(\forall \Diamond \phi) \Rightarrow \forall$ (INTEND $(\forall \Diamond \phi) \mathcal{U}$ (BEL $(\phi) \lor \neg \text{GOAL}(\exists \Diamond \phi))$) \rightsquigarrow I want ϕ if it makes sense at all.

Motivation & Scope

How to program intelligent agents?

- Theoretical foundations Beliefs and goals Belief-Desire-Intention architecture CTL*: the language of the discourse I-System (cont.)
- Commitment
- strategies
- Operationalizing the

BDI architecture Abstract BDI

reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

structural decomposition (knowledge bases):

belief base

◆ KRR technology ~→ First-Order Logic

goal base

- mutual compatibility of goals?
- declarative, procedural, maintenance
- KRR technology ~> set of ground FOL terms

intentions

- 1. *plan library:* storage of partial plan prescriptions
- 2. *intention stack:* partial plan instances

agent system dynamics:

- 1. library plan instantiation
- 2. gradual plan decomposition & execution

Abstract BDI reasoning cycle

initialize-state

Agenda

Motivation & Scope

```
How to program intelligent agents?
```

Theoretical foundations Beliefs and goals Belief-Desire-Intention architecture CTL*: the language of the discourse I-System (cont.) Commitment strategies Operationalizing the BDI architecture Abstract BDI reasoning cycle

Agent oriented programming languages

Research outlook

Conclusion

```
loop
    options := generate-options(event-queue)
    selected-options := deliberate(options)
    update-intentions(selected-options)
    execute()
    get-new-external-event()
    drop-successful-attitudes()
    drop-impossible-attitudes()
end loop
```

Rao & Georgeff. BDI Agents: From Theory to Practice, 1995

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Motivation

The landscape

AgentSpeak(L)/Jason

Reasoning cycle

Jason (example)

 Jadex

Reasoning cycle

Jadex (example)

Research outlook

Conclusion

Agent oriented programming languages

Motivation

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Motivation

The landscape AgentSpeak(L)/Jason

Reasoning cycle

Jason (example)

Jadex

Reasoning cycle

Jadex (example)

Research outlook

Conclusion

What is an APL?

- operationalization of a BDI architecture provides an underlying architecture & *tools for encoding the*
- system dynamics

syntax & model of execution (semantics)

Why APLs?

software engineering ~> systems modeling
 clear properties (expressivity, verification, etc.)

The landscape

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

- Agent oriented programming
- languages
- Motivation
- The landscape
- AgentSpeak(L)/Jason
- Reasoning cycle
- Jason (example)
- Jadex
- Reasoning cycle Jadex (example)

Research outlook

Conclusion

Theoretically oriented

- declarative languages built from scratch ৵ new syntax
- declarative KR techniques
- no integration with external/legacy systems

AgentSpeak(L), 3APL, 2APL, GOAL, CAN, etc.

Engineering approaches

- layer of specialised language constructs over a robust mainstream programming language (Java) ↔ code re-usability
- host language semantics
 - KR in an imperative language
- easy integration with external systems and environments

JACK, Jadex

BDI programming systems

+

-

—

+

+

AgentSpeak(L)/Jason

Agenda

Motivation & Scope

- How to program intelligent agents?
- Theoretical foundations
- Agent oriented programming
- languages
- Motivation
- The landscape
- $\mathsf{AgentSpeak}(\mathsf{L})/\mathsf{Jasor}$
- Reasoning cycle Jason (example)
- Jadex
- Reasoning cycle
- Jadex (example)
- Research outlook
- Conclusion

- programming language for BDI agents notation based on logic programming
- AgentSpeak(L) ↔ an abstract programming language
- Jason \rightsquigarrow operational semantics for AgentSpeak
- I various pragmatic extensions like external actions (Java)
- (platform for developing multi-agent systems)
- beliefs are FOL terms
- agent program \rightsquigarrow set of rules

triggering_event : context←body.

- events: +b, -b, +!g, -!g, +?g, $-?g \rightsquigarrow$ implicit goals!
- I **context**: logical formula (\land, \lor, \neg)
 - body: sequence of actions and subgoals to achieve

developed by Jomi F. Hübner and Rafael H. Bordini

Reasoning cycle

Agenda

Motivation & Scope

How to program intelligent agents?

- Theoretical
- foundations
- Agent oriented programming
- languages
- Motivation
- The landscape
- AgentSpeak(L)/Jason
- Reasoning cycle
- Jason (example)
- Jadex
- Reasoning cycle
- Jadex (example)
- Research outlook
- Conclusion

- 1. Perceiving the Environment
- 2. Updating the Belief Base
- 3. Receiving Communication from Other Agents
- 4. Selecting 'Socially Acceptable' Messages
- 5. Selecting an Event
- 6. Retrieving all Relevant Plans
- 7. Determining the Applicable Plans
- 8. Selecting one Applicable Plan
- 9. Selecting an Intention for Further Execution
- 10. Executing one step of an Intention

Jason (example)

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented

programming languages

Motivation

wouvation

The landscape

 ${\sf AgentSpeak}({\sf L})/{\sf Jason}$

Reasoning cycle

Jason (example)

Jadex

Reasoning cycle

Jadex (example)

Research outlook

Conclusion

+green_patch(Rock) : not battery_charge(low) ← ?location(Rock,Coordinates); !at(Coordinates); !examine(Rock).

 $+!at(Coords) \dots$

Jadex

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming

languages

Motivation

The landscape

AgentSpeak(L)/Jason

Reasoning cycle

Jason (example)

Jadex

Reasoning cycle Jadex (example)

Research outlook

Conclusion

programming language for BDI agents

Java + XML notation ↔ towards Agent-Oriented Software Engineering (AOSE)

mixes object-orientation and BDI concepts

■ explicit goals ~→ reasoning about (manipulation of) goals

 independent on middleware (adapters for integration with JADE and DIET)

beliefs: Java objects (sets)

goals: explicit (XML) \rightsquigarrow perform, achieve, query maintain **events** \rightsquigarrow the central element

plans: represent procedural knowledge ~~> head, context
(both XML), body (Java)

capabilities - modularity

Reasoning cycle

Agenda

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming

languages

Motivation

The landscape

 $\mathsf{AgentSpeak}(\mathsf{L})/\mathsf{Jason}$

Reasoning cycle

Jason (example)

Jadex

Reasoning cycle

Jadex (example)

Research outlook

Conclusion

(central point = event list)

1. Communication

(a) select message \rightsquigarrow update the event list

2. Dispatcher

(b) select event (possibly an incomming message)(c) find applicable candidate plans/capabilities

3. Scheduler

(d) select intention

(e) execute one intention step \rightsquigarrow event list update!

Jadex (example)

Agenda

<agent name="SampleAgent" package="jadex.examples.SampleAgent" ... > Motivation & Scope <!-- ... imports ... --> How to program <beliefs> intelligent agents? <belief name="rockExperiment" class="Experiment"> Theoretical <fact>new Experiment("rock")</fact> foundations </belief> Agent oriented </beliefs> programming <goals> languages Motivation <achievegoal name="examineRock"> The landscape <parameter name="position" class="GPS"/> AgentSpeak(L)/Jason <targetcondition>\$beliefbase.rockExperiment.isFinished()</targetcond)</pre> Reasoning cycle </achievegoal> Jason (example) </goals> Jadex Reasoning cycle <plans> Jadex (example) <plan name="moveToTheRock"> <trigger><goal ref="examineRock"/></trigger> Research outlook <body>new MotionPlan(\$event.goal.position)</body> Conclusion </plan> </plans> </agent>

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook State of the art &

on-going research

Conclusion

Research outlook

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook State of the art & on-going research

Conclusion

active developments in the APL arena

 \rightsquigarrow 2APL, GOAL, Jadex, JACK, Jazzyk, ...

goals → semantics & dynamics (Dastani, van Riemsdijk, Sardina) **planning** → integration/relationships

- lookahead (Hindriks, Padgham)
- AgentSpeak + planning (Menneguzi)
- relationship to HTN (de Silva, Padgham, Sardina)
- model checking and verification (Bordini, Fisher)
 software engineering (...)

modularity, debugging

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion

Summary: Agent-oriented programming languages

Conclusion

Summary: Agent-oriented programming languages

Agenda Motivation & Scope How to program

intelligent agents?

Theoretical foundations

Agent oriented programming

languages

Research outlook

Conclusion Summary: Agent-oriented programming languages 1. intelligent agents \rightsquigarrow social abilities \implies symbolic KRR

- computational model: reactivity vs. deliberation
- 3. theoretical foundations = BDI + KRR + dynamics
- 4. I-system = model of rationality
- 5. BDI operationalization & software engineering \rightsquigarrow BDI APL
- 6. Jason

2.

- 7. Jadex
- 8. State of the art + on-going threads

Motivation & Scope

How to program intelligent agents?

Theoretical foundations

Agent oriented programming languages

Research outlook

Conclusion Summary: Agent-oriented programming languages

Thank you for your attention.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ