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Chapter 1
Introdution

The present age is the age of siene and amazing tehnologies. The progressin the siene that has been made during the last several deades has openedfuture growth opportunities in all areas of our everyday life. We an mentionnamely omputer, medial, physial and hemial siene, ommuniationtehnologies, nanotehnologies, aerospae, but also hemial, petrohemial,mahinery and automotive industries, oil re�ning and many others as exel-lent examples of areas with the great progress. All these areas require deepunderstanding of fundamental physial priniples and relations. The resultsof R&D (Researh and Development) ativities are various tehnologies, pro-edures, omplex and large-sale systems, mahines, prodution lines, et.Integral parts of suh systems are sensors and atuators. The sensors andatuators are utilized by eletroni systems whih are used for monitoringand to ensure their aurate, reliable and safe operation during the lifetime.Model based preditive ontrol (MPC) is a tehnology o�ering a systematiapproah for ontrolling the multivariable onstrained dynamial systems.MPC tehnology uses a model of the ontrolled system to predit the futureresponse. The responses are funtions of the system input trajetories, pa-rameters and disturbanes. The task for MPC ontroller is to ompute theoptimal trajetories for the system inputs whih are subjet of the ontrolso that the de�ned objetives for the ontrol loop will be satis�ed. In theindustrial ontrol, these inputs are known as manipulated variables (MVs).The ontrol objetives are expressed by using a ost funtion (known alsoas penalty funtion). The ost funtion penalizes undesired behavior of thesystem over the predition horizon and it has usually additive form. Theindividual terms of the sum desribes di�erent goals for the ontroller. Theimportane of the partiular goals are expressed by using the so alled weight-ing oe�ients. The next important feature of MPC is the ability to handlethe onstraints in a nature and systemati manner. These onstraints arede�ned namely by the tehnologial, eonomial, but also safety restritionsof the ontrolled system.



The MPC problem is formulated as an optimization problem whih has tobe solved periodially at eah sampling period. This is a real di�erentiatorof MPC when ompared to lassial ontrol methods. In the e�ient MPCformulations, the optimization problem is expressed as a mathematial pro-gramming problem whih an be solved quite e�iently for a ertain lass ofproblems. However, the e�ieny of the solvers is still a limiting fator forMPC appliations in several areas, espeially if the ontrolled systems arenonlinear and/or are sampled with fast sampling period. The linearity ofthe ontrolled system is an important fator when implementing the MPController. If the MPC ontroller is designed for the linear system, all theonstraints are linear and the ost funtion is quadrati, we refer to a lin-ear MPC ontroller. The linear MPC ontroller is translated to a quadratiprogramming problem (QP) for whih there exist very e�ient solvers. The�rst lass of the most e�ient solvers is based on ative sets, the seond isknown as interior point methods.The things beoming ompliated when the system is nonlinear. In this asethere are several options how to ahieve a good MPC ontrol. The simplestone is just to ignore the nonlinearity at all and to design the ontroller for aertain operating point of the system. With some luk, the ontroller will berobust enough and will behave aeptably and we are done (...preferred inthe pratie). If the nonlinearity annot be simply ignored, the linear MPController in its basi formulation annot be used and must be extended. Themost e�ient and systemati solution, at least from the theoretial point ofview, is to utilize the fully nonlinear ontroller. This means that the on-troller utilizes the nonlinear model of the proess to ompute the preditionsand to handle the onstraints. The resulting optimization problem is thennonlinear whih may be a hallenge to solve in the real-time at eah samplingperiod, as it is required. Another interesting question, when deided for thenonlinear MPC, is how to get a reliable nonlinear model.It is well known that the suess of the MPC appliation depends on themodel quality, i.e. how aurately the model desribes the ontrolled system.Better auray means usually better ontrol performanes and less ompli-ations with the robustness of the solution. The modeling phase in the MPCdesign proedure plays a very important role. The designer must deide onwhether to use the linear or nonlinear approah, selet suitable model stru-ture, deide on the model omplexity, prepare the identi�ation experimentollet representative data and to �t the model parameters. All these steps3



Figure 1.1: Hierarhial struture of a ontrol systemare very important for the suessful MPC story.1.1 Advaned ontrol tehnologiesAvailable omputer tehnologies enable implementing the ontrol systems ina wide range of appliations. Seletion of appropriate ontrol tehnology andof partiular ontrol algorithms is in�uened by many fators, e.g. numberof atuators, ontrolled variables (CV), required sampling period, safety andreliability requirements, physial struture of the ontrolled system, om-muniation limitations, et. As an example, we an mention a ommonlyused struture of the ontrol system in the proess industry - hierarhialstruture. The hierarhial struture is depited on Fig. 1.11.1.1 InstrumentationThis layer represents the basi atuators and sensors of the ontrolled teh-nology. The number of input/output points depends on the tehnology butin general, in the proess industry, it may be very large (more than severalthousands). Typially, it is required to write/read all the values periodiallywith a time period orresponding to the system harater. The measuredvalues are marked by the time stamp and are stored in a proess historydatabase whih is a very e�ient way how to organize the proess data.4



1.1.2 Basi ControlThe basi ontrol layer is usually a ore system that ensures the basi fun-tionality and safety operation of the tehnology. The basi ontrol must bereliable system whih often provides a bakup solution for the advaned on-trol layer. It ontains various tehnologies to ahieve the mentioned goals. Ifwe refer to basi ontrol, we have to think about the tehnology as a wholeand not only about the elemental ontrol loops manipulating the plant atu-ators. This inludes namely the overall ontrol strategy and its hierarhy. Itintegrates all the basi ontrol modes (manual, automati, asade ontrol)but also monitoring and visualization tools. This layer an be seen as thegate for the advaned ontrol and optimization layer beause it provides plantprestabilization and redues the nonlinearities (linearization like e�et). Thefeedbak loops are typially implemented by PID ontrollers.1.1.3 Advaned ControlThe ontrol algorithms whih ontain some advaned funtionality are in-luded in the advaned ontrol layer. These algorithms interat diretly withthe basi ontrol and perform oordination of individual parts and ontrolloops of basi ontrol strategies. The oordination is usually done throughthe setpoints, based on master/slave system. Note that the sampling periodsin the advaned ontrol layer are slower than in the basi ontrol beause therejetion of fast disturbanes is a job for the basi ontrol. The main goalis to ensure the optimal operation of the plant under the given onditionswhih are driven namely by atual tehnologial and eonomial onditionsand by resoure restritions. It is lear that the advaned ontrol algorithmshave to work with multivariable systems, must be able to handle presribedonstraints and should ensure the optimal operation. The MPC ontrol teh-nology is therefore an ideal andidate for this position. This layer may ontainalso the so alled real-time optimization (RTO) module. RTO module is usu-ally a model based optimization algorithm that omputes the goals for theadvaned ontrol of individual plant units or proesses. RTO may be statior dynami and is used for the internal oordination of individual parts of theplant. It is not a surprise, that RTO may be formulated and implementedby an MPC ontroller.1.1.4 PlaningThe top supervisory layer in the industrial ontrol systems are planing andsheduling. These are usual entry points for the plant tehnologists and5



Figure 1.2: A way from the ontrol to an optimization problemmanagers. This layer is based on eonomi-related informations and shouldprovide a omplex overview about the plant performane. The main toolshere are the databases, visualization tools and speialized omputation rou-tines. The planing layer spei�es the goals for the advaned ontrol layerin the form of various setpoints, onstraints, optimality onditions, resoureavailability and resoure alloation, shedules, et.Main enablers for the advaned ontrol and planing tools are the e�ientmathematial optimization algorithms and powerful omputers whih anhost the omputation routines. The software arhiteture of the ontrol ap-pliations must be very �exible. The solution has to be modular, easilyreusable, extendable, but also user friendly. The last mentioned feature isvery important and may be a key(!) for suess of an advaned ontrol teh-nology.The MPC methodology should be seen as a tool whih enables to deliverythe deided goals spei�ed for the ontrolled proess and not as a tehnologywhih ould replae all the ontrol tehniques. The suess of appliationsdepends namely on the skills of the appliation engineers responsible for MPCimplementation to a partiular proess. Translation of the MPC problem toan optimization problem is relatively simple and straightforward, as it willbe shown later in this text. The di�ult thing may be the formulation ofthe ontrol problem as a MPC problem. This is very important for pratialappliations and it requires exellent understanding of the proess (from theontrol point of view) and very good knowledge of MPC, see Fig. 1.2 .1.2 Classial approah to disrete time dynami sys-tem optimizationIn this setion three general optimization methods of disrete time dynamisystem are presented. In the �rst part it is variational approah based on6



mathematial programming. The seond general method is disrete maxi-mum priniple and the last one is dynami programming.1.2.1 Mathematial programming approah to disretesystem optimizationLet us have disrete time dynami system desribed by state spae di�ereneequation
x(t+ 1) = f

(
x(t), u(t), t

)
, t = t0, . . . , t1−1 (1.1)with initial ondition x(t0) = x0. The problem is to �nd the ontrol sequene

u(t0), . . . , u(t1−1), whih minimizes the riterion in the form
J = h

(
x(t1)

)
+

t1−1∑

t=0

g
(
x(t), u(t), t

)
, (1.2)where (t1 − t0) is the optimality horizon. It is the problem of mathematialprogramming - the minimization of the riterion (1.2) with (t1 − t0) limitingonditions in the form of equations (1.1). Suh problem an be solved usingLagrange vetor λ(t). Let us de�ne augmented riterion (Lagrangian)

J̄ = h
(
x(t1)

)
+

t1−1∑

t=t0

{
g
(
x(t), u(t), t

)
+ λT(t+ 1)

(
f
(
x(t), u(t), t

)
− x(t+ 1)

)}
.(1.3)The Hamiltonian is de�ned

H
(
x(t), u(t), t

)
= g

(
x(t), u(t), t

)
+ λT(t+ 1)f

(
x(t), u(t), t

)
, (1.4)where t = t0, . . . , t1−1. The Lagrangian an be written in the form

J̄ = h
(
x(t1)

)
− λT (t1)x(t1) +H(x(t0), u(t0), t0) +

+

t1−1∑

t=t0+1

{
H
(
x(t), u(t), t

)
− λT(t)x(t)

}
.In the following simple notation is used

H(t) = H
(
x(t), u(t), t

)
,

g(t) = L
(
x(t), u(t), t

)
,

f(t) = f
(
x(t), u(t), t

)
.7



If the funtion J̄ is di�erentiable with respet to x(t) a u(t), the inrementof the riterion J̄ along the trajetory of the system state and ontrol equals
dJ̄ =

[
∂h(t1)

∂x(t1)
− λT (t1)

]
dx(t1) +

∂H(t0)

∂x(t0)
dx(t0) +

∂H(t0)

∂u(t0)
du(t0) +

+

t1−1∑

t=t0+1

{[
∂H(t)

∂x(t)
− λT(t)

]
dx(t) +

∂H(t)

∂u(t)
du(t)

}
. (1.5)Vetor is always onsidered as a olumn vetor and the derivative of thesalar funtion g(x) of vetor argument x is a row vetor

∂g

∂x
=

[
∂g

∂x1
, . . . ,

∂g

∂xn

]and the inrement of this funtion equals
dg(x) =

∂g(x)

∂x
dx =

∂g

∂x1
dx1 + · · · +

∂g

∂xn

dxn.If the funtion g(x, y) equals g(x, y) = yTAx, then its derivative equals
∂g

∂x
= yTA,

∂g

∂y
= xTAT .The derivative of vetor funtion f(x) of vetor argument x equals Jaobimatrix

∂f

∂x
=




∂f1
∂x...
∂fm
∂x


 =




∂f1
∂x1

· · ·
∂f1
∂xn... ...

∂fm
∂x1

· · ·
∂fm
∂xn



.The inrement of the state dx(t) aused by inrement du(t) follows from (1.1)as

dx(t+ 1) =
∂f(t)

∂x(t)
dx(t) +

∂f(t)

∂u(t)
du(t),Its in�uene to the riterion an be negleted if the Lagrange oe�ients areproperly hosen. In formal way the neessary ondition of optimum equals

∂J̄/∂x(t) = 0. From this follows the neessary onditions
∂H(t)

∂x(t)

T

− λ(t) = 0 , t = t0 + 1, . . . , t1−1,

∂h(t1)

∂x(t1)

T

− λ(t1) = 0 8



and from the de�nition of the funtionH(t) as in (1.4) the di�erene equationare obtained
λ(t) =

∂g(t)

∂x(t)

T

+
∂f(t)

∂x(t)
λ(t+ 1) , t = t0, . . . , t1−1with end ondition

λ(t1) =
∂h(t1)

∂x(t1)

T

.The inrement of the riterion (1.5) equals
dJ̄ =

t1−1∑

t=t0

∂H(t)

∂u(t)
du(t), (1.6)beause for �xed initial ondition x(t0) the inrement is of ourse dx(t0) =

0. The expression ∂H(t)/∂u(t) equals the gradient of the riterion J withrespet to ontrol sequene u(t) and with the limitation given by systemequation (1.1). The neessary ondition for optimal ontrol sequene u∗(t) iszero inrement of the riterion (1.6) for arbitrary du(t) in the neighbourhoodof u∗(t). The sequene u∗(t) must be staionary point of the riterion J , so
∂H(t)

∂u(t)
= 0 , t = t0, . . . , t1−1.For the solution of disrete optimal ontrol problem it is neessary to �ndthe solution the system of di�erene equations

x(t+ 1) =

(
∂H(t)

∂λ(t+ 1)

)T

= f(x(t), u(t), t) , (1.7)
λ(t) =

(
∂H(t)

∂x(t)

)T

=

(
∂g(t)

∂x(t)

)T

+
∂f(t)

∂x(t)
λ(t+ 1) , t = t0, . . . , t1−1,with boundary onditions

x(t0) = x0,

λ(t1) =

(
∂h(t1)

∂x(t1)

)T (1.8)and the ontrol u∗(t) given by the ondition
∂H(t)

∂u(t)
=

∂g

∂u(t)
+

∂f(t)

∂u(t)
λ(t+ 1) = 0. (1.9)The solution of leads to two point boundary value problem, beause initialonditions (1.8) for vetor x(t) are given in time t = t0 and initial onditions9



for λ are given in time t = t1. Both equations (1.7) are oupled by ontrolvetor u(t), whih is given by equation (1.9). It is the reason for the di�ultyof the general problem of optimal ontrol disrete time dynami system. Inthis approah there is no limitation in ontrol sequene u(t). Suh probleman be ompletely solved for linear system and quadrati optimality riterion,so alled LQ problem.1.2.2 Maximum priniple for disrete time problemFor the optimization of ontinuous time system the elebrated Pontriaginmaximum priniple was developed. In suh approah the limitation of theontrol vetor an be respeted. In analogous way the disrete maximumpriniple was developed, whih is next given without proof. Let us againhave state spae equations of disrete time system in the form
x(t+ 1) = f(x(t), u(t)) (1.10)where t ∈ Z is disrete time, x(t) is state of the system, u(t) is the ontrolwhih belongs to the limitation set U and the system is for simpliity timeindependent. The problem is to �nd optimal ontrol u∗(t) minimizing theriterion

J = h(x(t1), u(t1)) +

t1−1∑

t=t0

g(x(t), u(t))dt (1.11)For the solution of suh problem the Hamiltonian is formed
H(x(t), u(t), p(t+ 1)) = −g(x(t), u(t)) + pT (t+ 1)f(x(t), u(t)) (1.12)The maximum priniple states that optimal ontrol maximizes the Hamilto-nian, so

u∗(t) = argmaxu(t)∈UH(x(t), u(t), p(t+ 1)) (1.13)but only in ase if the reahability set R(z) = {z : z = f(x, u), u ∈ U} isonvex for all x(t). The system equation (1.10) is given by
x(t+ 1) =

(
∂H(x(t), u(t), p(t+ 1)

∂p(t+ 1)

)T (1.14)Equation for the so alled onjugate system equals
p(t) =

(
∂H(x(t), u(t), p(t+ 1))

∂x(t)

)T (1.15)For the system (1.10) it is usually known the initial ondition x(t0) and forthe onjugate system (1.15) the �nal ondition equals
p(t1) = −

∂h(x(t1))

∂x(t1)
.10



Disrete maximum priniple hanges the problem of optimal ontrol to twopoint boundary value problem of the two sets of di�erene equations andmaximization of Hamiltonian with respet to ontrol u(t). Utilizing maxi-mum priniple the limitation of ontrol vetor u(t) ∈ U an be aepted.1.2.3 Dynami programmingDynami programming, onneted with the name R. Bellman, is based ontwo simple priniples. The �rst one is alled priniple of optimality. Prinipleof optimality has di�erent formulation as neessary and su�ient ondition.For our ase of optimality riterion as (1.11) it is the neessary and su�ientondition. Problem of optimal ontrol is the multistep optimization problem,in eah time t in the ontrol interval, optimal ontrol u∗(t) must be hosen.Priniple of optimality states that from arbitrary state x(t) our next de-ission must be optimal, without respet how the state is reahed by previousdeissons. It follows from well known proverb "Don't ry on the spilled milk".It is based on obvious fat that you annot hange the past but your futuremust be ontrolled in optimal way.The next priniple is the priniple of invariant imbeding. Single probleman be nested on the whole set of similar problems and solving suh set ofproblems the solution of original problem is obtained.For disrete time dynami system (1.10) with initial ondition x(t0) = x0, weare looking for suh ontrol sequene u(t) in time interval t ∈ T ≡ [t0, t1−1],whih minimizes the riterion (1.11) with respet to all limitation of state
x(t) ∈ X and ontrol u(t) ∈ U . Suh single problem is imbeded to the wholeset of problems of optimal ontrol of dynami system (1.10) with free initialtime whih is denoted as i ∈ T and free initial state whih is denoted as
s ∈ X. In suh ase the optimality riterion equals

J (i, s, u(t0), . . . , u(t1 − 1)) = h (x(t1)) +

k1−1∑

k=i

g (x(k), u(k), k) (1.16)The �nal time t1 is �xed. By the solution of the whole set of problems ouroriginal problem is solved for i = t0 and s = x0. Let us introdue optimalfuntion V (s, i), whih is also alled Bellman funtion
V (s, i) = min

u(i),...u(t1−1)
J (i, s, u(t0), . . . , u(t1 − 1)) (1.17)11



Simple modi�ation of previous relation leads to
V (s, i) = min

u(i)

{
g (s, u(i), i) + min

u(i+1),...

[
h (x(t1)) +

t1−1∑

t=i+1

g (x(t), u(t), t)

]}

but the seond term in previous relation equals shifted optimal funtion
V (s(i+ 1), i+ 1) = V (f (s, u(i), i) , i+ 1) .Optimal funtion V (s, i) is the solution of funtional reursive equation(Bellman equation)

V (s, i) = min
u(i)

{g (s, u(i), i) + V (f (s, u(i), i) , i+ 1)} . (1.18)In �nal time t1 the optimal funtion equals
V (s, k1) = h (s(k1)) (1.19)whih is the boundary ondition for Bellman equation (1.18) and h(s(t1))is the target term of the optimality riterion (1.11). Computation of theoptimal funtion is in priniple very simple. The Bellman funtion V (s, i)is omputed bakvard in time starting from the �nal ondition (1.19) for allstates and in eah time step minimization with respet to ontrol u(i)must besolved. There are two problems during the solution of Bellman equation. Ingeneral ase the grig of states x(t) must be hosen in whih optimal funtionis omputed. For great dimension of state vetor the grid of states haslarge dimension whih grows exponentially. Suh phenomenon alled Bellman"urse of dimensionality". Another problem is the neessity to interpolateand extrapolate in the grid of states whih make the omputation of Bellmanfuntion di�ult. Using Bellman equation the limitation of system states

x(t) ∈ X and ontrol u(t) ∈ U an be respeted. The losed form of thesolution of Bellman equation an be obtained in ase of quadrati optimalontrol of linear disrete or ontinuous time systems.1.2.4 Quadrati Optimal Control of Linear SystemThe general results are now used to solve the problem of optimal ontrollinear disrete time system with quadrati riterion, so alled LQ problem.Stohasti version of suh problem is alled LQG problem (the G is forGaussian noise in the system state equation). Let us have linear disretetime system
x(t+ 1) = A(t)x(t) +B(t)u(t) (1.20)12



with initial state x(0) = x0 and optimality riterion in quadrati form
J =

1

2
xT (t1)Sx(t1) +

1

2

t1−1∑

t=t0

{
xT (t)Q(t)x(t) + uT(t)R(t)u(t)

}
, (1.21)where S is positive semide�nite matrix, Q(t), t = t0, . . . , t1 is the sequeneof positive semide�nite matries and R(t), t = t0, . . . , t1−1 is the sequene ofpositive de�nite matries. The sequene of funtions H(t) aording to (1.4)equals

H(t) =
1

2
xT(t)Q(t)x(t) +

1

2
uT(t)R(t)u(t) + λT (t+ 1)

(
A(t)x(t) +B(t)u(t)

)
.(1.22)Aording to (1.7)�(1.9) the state x(t), ostate λ(t) and ontrol u(t) is givenby the set of di�erene equations

x(t+ 1) =
∂H(t)

∂λ(t+ 1)
= A(t)x(t) + B(t)u(t) , x(t0) = x0, (1.23)

λ(t) =
∂H(t)

∂x(t)
= Q(t)x(t) + AT (t)λ(t+ 1) , λ(t1) = Sx(t1),(1.24)

0 =
∂H(t)

∂u(t)
= R(t)u(t) +BT(t)λ(t+ 1). (1.25)From the (1.24) follows

u(t) = −R−1(t)BT(t)λ(t+ 1). (1.26)Beause matries R(t) must be positive de�nite the existene of its inversionis guaranted. From (1.23) and (1.24) follows
x(t+ 1) = A(t)x(t)−B(t)R−1(t)BT (t)λ(t+ 1) , x(0) = x0

λ(t) = Q(t)x(t) +AT (t)λ(t+ 1) , λ(t1) = Sx(t1).Suh system an be written in matrix form
[
x(t+ 1)
λ(t)

]
=

[
A(t) −B(t)R−1(t)BT (t)
Q(t) AT(t)

] [
x(t)

λ(t+ 1)

]
.From the solution of this boundary value problem, the optimal ontrol (1.26)is obtained. Previous matrix equation an be written in the form

[
I B(t)R−1(t)BT (t)

0 AT (t)

] [
x(t+ 1)

λ(t+ 1)

]
=

[
A(t) 0

−Q(t) I

] [
x(t)

λ(t)

] (1.27)and for regular matrix A(t) (if the disrete time system originated fromsampling of ontinuous time system, its matrix A(t) is alvays regular)
[
x(t)
λ(t)

]
=

[
A(t) 0
−Q(t) I

]−1 [
I B(t)R−1(t)BT (t)
0 AT (t)

] [
x(t+ 1)
λ(t+ 1)

]
, (1.28)13



or[
x(t)
λ(t)

]
=

[
A−1(t) A−1(t)B(t)R−1(t)BT (t)

Q(t)A−1(t) AT (t) +Q(t)A−1(t)B(t)R−1(t)BT (t)

] [
x(t+ 1)
λ(t+ 1)

]
.Initial ondition λ(t1) = Sx(t1) from (1.24) an be substituted to (1.28) andso

[
x(N−1)
λ(N−1)

]
=

[
A(N−1) 0
−Q(N−1) I

]−1

[
I B(N−1)R−1(N−1)BT (N−1)
0 AT (N−1)

] [
I

Q(N)

]
x(N).From this follows that Lagrange vetor λ(t) an be expressed in the form

λ(t) = P (t)x(t),where P (t) is some matrix. From (1.25) follows
0 = R(t)u(t) +BT(t)P (t+ 1)x(t+ 1)

= R(t)u(t) +BT(t)P (t+ 1)(A(t)x(t) +B(t)u(t))

=
[
R(t) +BT (t)P (t+ 1)B(t)

]
u(t) + BT (t)P (t+ 1)A(t)x(t).From previous relation optimal ontrol sequene equals

u(t) = −
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
BT (t)P (t+ 1)A(t)x(t)(1.29)

= −K(t)x(t).Instead of regularity of the matrix R(t) it is su�ient to ful�ll only weakerondition whih is the regularity of the matrix (R(t) + BT(t)P (t+ 1)B(t)).Quadrati optimal ontrol results in linear time dependent state feedbakwith gain (Kalman gain)
K(t) =

[
R(t) +BT(t)P (t+ 1)B(t)

]−1
BT (t)P (t+ 1)A(t). (1.30)After substitution of this ontrol to (1.24) the following relation is obtained

P (t)x(t) = Q(t)x(t) + AT (t)P (t+ 1)A(t)x(t) +AT (t)P (t+ 1)B(t)u(t)

= Q(t)x(t) + AT (t)P (t+ 1)A(t)x(t)−

− AT (t)P (t+ 1)B(t)
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
×

× BT (t)P (t+ 1)A(t)x(t).Suh ondition is valid for arbitrary state x(t), so the sequene of matries
P (t) is given by matrix di�erene equation
P (t) = AT(t)P (t+ 1)A(t) +Q(t)− (1.31)

− AT (t)P (t+ 1)B(t)
[
R(t) + BT(t)P (t+ 1)B(t)

]−1
BT(t)P (t+ 1)A(t)14



with end ondition
P (t1) = S. (1.32)Matrix equation (1.31) is alled Riati Di�erene Equation. Riatidi�erene equation an be written in the form

P (t) =
(
A(t)−B(t)K(t)

)T
P (t+1)

(
A(t)−B(t)K(t)

)
+KT(t)R(t)K(t)+Q(t),(1.33)From previous relation follows that if S = ST ≥ 0 then all matries P (t) arealso symmetrix and positive semide�nite.Steady state solution of Riati equationLet us have time invariant disrete time system

x(t+ 1) = Ax(t) +Bu(t) (1.34)and optimality riterion
J =

1

2
xT (t1)Sx(t1) +

1

2

t1−1∑

t=t0

{
xT (t)Qx(t) + uT(t)(t)u(t)

}
, (1.35)where S and Q are positive semide�nite onstant matries and R is positivede�nite onstant matrix. Optimal ontrol u∗(t)minimizing previous riterionresults in linear state feedbak

u(t) = −K(t)x(t), (1.36)It an be shown that for inreasing optimality horizon (t1 → ∞) Kalmangain K(t) is approahing to onstant matrix K and also matrix P (t) givenby Riati equation is approahing to onstant matrix P . Suh onstantmatrix P is the silution of Algebrai Riati Equation
P = ATPA− ATPB

[
R + BTPB

]−1
BTPA +Q, (1.37)Suh algebrai equation results from matrix Riati equation if P = P (t) =

P (t+ 1). Linear optimal feedbak gain (Kalman gain) equals
K =

[
R +BTPB

]−1
BTPA. (1.38)Two question must be answered. If the limiting ondition of Riati equationeqists (lim(t1−t)→∞ P (t) = P ) and equals to the solution of algebrai Riatiequation P and if is stable the feedbak optimal system with state matrix

(A − BK). Both onditions are ful�lled if the ontrolled system (1.34) isstabilizable (ouple (A,B) is stabilizable) and the system with output matrix
CQ is detetable (ouple (CQ, A) is detetable), where CT

QCQ = Q.15



1.3 Brief overview of Model Preditive ControlModel preditive ontrol (MPC) is one of the methods that enables optimalontrol of onstrained multivariable dynamial systems. It is interesting tonote that MPC has been (re)disovered and widely used by the industrialpratitioners before having solid theoretial base. The �rst known formula-tion of a moving horizon ontroller using a linear programming is in [28℄ andprobably �rst desription of MPC ontrol appliation in [33℄. At the presenttime, MPC is a standard advaned ontrol tehnology used in the proess in-dustry. For the omputational limit reasons, the pratial MPC appliationshave been limited to the linear models whih may not be aurate enoughfor some lasses of appliations. For suh lasses of systems, it is bene�ialto de�ne the nonlinear MPC whih requires solution of a onstrained non-linear optimization problem at eah sampling period. In nonlinear MPC,the optimization problems are usually solved by using Sequential QuadratiProgramming.In the standard formulation of the model preditive ontrol, the optimizationproblem (usually quadrati program) is solved in eah sampling instane andtherefore time onsumption aused by omputation of ontrol ation an besigni�ant. It was shown that a linear [5℄ or quadrati [6℄ program an besolved expliitly o�-line and then the ontrol ation is generated by piee-wise a�ne funtion of the system state. Suh an optimization is known asMulti-Parametri Programming [18℄. This approah is useful namely in thease when we want to use MPC for ontrol the relatively fast sampled, butsmall, systems.Another atual topi in the model preditive ontrol is hierarhial, deen-tralized and distributed ontrol [31, 36, 19, 1℄. Today's ommuniation teh-nologies enables oordinated ontrol of large-sale systems, e.g. energy orwater distribution networks [29℄. The large-sale system ontroller an beformulated and implemented as a entral algorithm whih enables the over-all optimality. The entralized optimal ontrol enables signi�ant savingsduring the system lifetime. But there may be problems with entralized on-trollers, e.g. too large optimization problems, ommuniation limitations,safety reasons, et. It is very pratial to deompose the entral optimal on-troller so that there will be smaller ontroller for all important subsystems(slave ontrollers) whih are oordinated by a oordinator (master problem).Currently, the number of suessful MPC appliations and researh work16



grows rapidly. Some MPC survey papers are [30, 7, 22, 2℄. The standardbooks about the linear MPC are [34, 21, 14℄ and about non-linear MPC,for example the set of important papers [25℄. A real-time iteration shemefor the nonlinear MPC has been proposed in [16℄. We an found a numberof pratial ommerial MPC tehnologies in the literature. A survey ofindustrial MPC tehnologies an be found in [30℄.
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Chapter 2 Linear Model Preditive Control
This hapter deals with the fundamentals of the linear model preditive on-trol. The linear formulation is very popular and often used in the pratialappliations when ompared to the nonlinear MPC. The reason is lear - thesimpliity. The advaned ontrol tehnologies, for whih the MPC is usuallyused, are sitting at the top of the basi ontrol strategy. Therefore, there isno need to over all the operating regimes of the ontrolled system, espeiallythe emergeny states, system startup or shutdown, et. The objetive for theMPC ontroller in the advaned ontrol layer is to optimize the performaneswhile satisfying the onstraints. Of ourse, there are appliations, where theMPC ontroller is used as the basi ontroller, diretly in the basi ontrollayer. In this ase, we an enjoy all the advantages whih are o�ered by theMPC, namely the ability to ontrol the multivariable systems in a very sys-temati manner, to handle the onstraints and to provide the optimal ontrolsolution.2.1 Motivation exampleBefore starting the formal de�nitions of MPC, we will give a motivation ex-ample, whih illustrates how simple the MPC ontroller may be. Assume astable linear system with one output and one input. The system is periodi-ally sampled.
• System model and preditions: The relation between the systeminput and output an be approximated based on the trunated step re-sponse as

y(k) ∼= y0 +

n∑

i=0

hi∆u(k − i) , (2.1)where y(k), ∆u(k) = u(k) − u(k − 1) and hi are the system output,inrements of the system input and the step response oe�ients respe-tively. Then, the predition at the disrete time k+ j is given by (modelbase preditions)
y(k + j|k) ∼= y0 +

n∑

i=0

hi∆u(k + j − i|k) . (2.2)



It is easy to show, by using (2.2), that the system output predition overthe predition horizon of N samples an be expressed as
Y k+N
k = 1y0 +H1∆Uk−1

k−n +H2∆Uk+N
k , (2.3)where the matries H1 and H2 ontain the step response oe�ients,

Y k+N
k , ∆Uk+N

k are the system output preditions and system input in-rement preditions, ∆Uk−1
k−n are the past system input inrement values,i.e.

Y k+N
k =

[
y(k) y(k + 1) . . . y(k +N)

]T
,

∆Uk+N
k =

[
∆u(k) ∆u(k + 1) . . . ∆u(k +N)

]T
,

∆Uk−1
k−n =

[
∆u(k − n) ∆u(k − n+ 1) . . . ∆u(k − 1)

]T
.Note that the termH1∆Uk−1

k−n in (2.3) is related to the initial system stateresponse, known also as autonomous or unfored response. In pratialappliations, due to disturbanes and model unertainty, this term mustbe replaed by a known funtion of the system state.
• Control problem and MPC formulation: Now, for example, wewould like the system to follow the given referene signal Rk+N

k whihtrajetory is known in advane, over the whole predition horizon. Inother words, the system output should be as lose to the referene sig-nal as possible (�rst ontrol goal), with reasonable ontrol ation (seondontrol goal). These requirements an be expressed by de�ning the trak-ing error
Ek+N

k = Rk+N
k − Y k+N

k = Rk+N
k − 1y0 −H1∆Uk−1

k−n −H2∆Uk+N
k (2.4)and by minimizing the ost funtion, whih an be de�ned, for example,as a sum of weighted seond norms 1 (MPC problem)

J
(
∆Uk+N

k |Rk+N
k

)
=

∥∥Ek+N
k

∥∥2

QE
+
∥∥∆Uk+N

k

∥∥2

Q∆U
. (2.5)

• Resulting optimization problem: The system input trajetory onthe predition horizon an be determined by solving the optimizationproblem
∆U ∗k+N

k = arg min
∆Uk+N

k

J
(
∆Uk+N

k |Rk+N
k

)
, (2.6)whih an be viewed as a simple linear least squares problem. The so-lution an be found expliitly and the result will be a linear funtion ofthe system state and external parameters.1The �rst ontrol goal (referene traking) orresponds to the �rst term in the riterion,the seond ontrol goal (atuator ativity) to the seond one.19



The example illustrated basi idea behind the MPC, i.e. using the systemmodel to predit the future behavior, formulation of the ontrol goals, trans-formation of the ontrol goals as MPC ontrol problem and transformationof the MPC problem to an optimization problem.2.2 Formulation of linear MPCA great number of systems and proesses work in a steady-state or loseto an operating point. It is well known that behavior of systems undersuh onditions an be usually well approximated by a linear model. In thissetion, we will formulate and analyze the basi linear MPC ontroller. Themain omponents of MPC are the following: system model, ost funtion,onstraints and resulting optimization problem.2.2.1 System models in MPCIn the introdutory hapter, we formulated a simple MPC algorithm basedon preditions from the step response of the system. A similar preditionmodel an be derived by using the impulse response. Generally, in the linearMPC, we an use any linear model. In addition to step and impulse basedpredition models, we will disuss only ARX and state spae models. Themodeling stage in MPC design is one of the most important things. Thequality of the resulting ontroller is proportional to the model quality andtherefore the model should be as aurate as possible.Impulse responseThe relation between the system input and output an be desribed by equa-tion
y(k) =

∞∑

i=0

giu(k − i) , (2.7)whih is known as onvolution or weighting sequene model and y(k), u(k),
gi are the system output, input and oe�ients of the impulse response,respetively. The model an be used only for stable systems with the �niteimpulse response (FIR). As it has been shown in the introdutory MPCexample, the response is trunated and only n most important oe�ientsare used. Therefore, the predition model an be desribed by relation

ŷ(k + j|k) =

n∑

i=0

giu(k + j − i|k) . (2.8)20



The advantages of the impulse and step response models are that we do notneed to know any prior information about the system (of ourse, it must bestable and the responses must be �nite), i.e. the system is a "blak box".These models an be also used for the multivariable systems for whih wehave
ym(k) =

p∑

l=1

n∑

i=0

gl,mi ul(k − i) , (2.9)where ym(k) is the m-th system output, p is number of system inputs, ul(·)is l-th input and gl,mi is the sequene of impulse response of l-th input to
m-th system output. It is interesting to note, that the �rst and a number ofurrent pratial MPC implementations are based on step or impulse responsemodels.ARX based modelsThe ARX based models are popular in the ontrol soiety beause they enableto desribe also the basi stohasti properties of the systems. Basi form ofthe ARX model with a measurable disturbane is

y(k) +

na∑

i=1

aiy(k − i) =

nb∑

i=0

biu(k − i)+

nd∑

i=0

div(k − i) + e(k) , (2.10)where y(k), u(k), d(k) and e(k) are system output, input, disturbane andwhite noise. The resulting predition model an be written in a vetor form
~y = A−1

p (−Atỹ + Btũ+Dtṽ + Bp~u+Dp~v) , (2.11)where the matries are given by the ARX model oe�ients
[At|Ap] =




an . . . a1 | 1 0 . . . . 0
0 an . . . | a1 1 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 an | . . a1 1 0 . 0
0 . . . 0 | an . . a1 1 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . an . . a1 1


 ,

[Bt|Bp] =




bn . . . b1 | b0 0 . . . . 0
0 bn . . . | b1 b0 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 bn | . . b1 b0 0 . 0
0 . . . 0 | bn . . b1 b0 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . bn . . b1 b0


 ,

[Dt|Dp] =




dn . . . d1 | d0 0 . . . . 0
0 dn . . . | d1 d0 0 . . . 0
. . . . . | . . . . . . .

0 . . 0 dn | . . d1 d0 0 . 0
0 . . . 0 | dn . . d1 b0 . 0
. . . . . | . . . . . . .

0 . . . 0 | . . dn . . d1 d0


 .
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The predition vetors are
~y =

[
ŷ(k) · · · ŷ(k +N − 1),

]T
,

~u =
[
u(k) · · · u(k +N − 1),

]T
,

~v =
[
v(k) · · · v(k +N − 1),

]T
,and the vetors of past output, input and disturbane values are

ỹ =
[
y(k − na) · · · y(k − 1)

]T
,

ũ =
[
u(k − na) · · · u(k − 1)

]T
,

ṽ =
[
v(k − na) · · · v(k − 1)

]T
.State spae modelThe state spae models are important for the MPC. The reason is that theyprovide desription of multivariable systems and are also important for theanalysis. Another advantage is that the state spae model an be used alsofor systems with integrators and unstable systems. A basi form an bewritten as

x(k + 1) = Ax(k) + Bu(k) ,

y(k) = Cx(k) +Du(k) .The predition trajetories of the system output are given by
~y = P̄x(k) + H̄~u , (2.12)where x(k) is the initial state. Vetors ~y, ~u and matries P̄ , H̄ are

~y =
[
y(k)T y(k + 1)T · · · y(k +N − 1)T

]T
,

~u =
[
u(k)T u(k + 1)T · · · u(k +N − 1)T

]T
,

P̄ =




C
CA...

CAN−1


 , H̄ =




D
CB D... . . .

CAN−2B · · · CB D


 .Predition equations for the system state are given by

~x = Px(k) +H~u , (2.13)where vetor ~x and matries P and H are
~x =

[
x(k + 1)T x(k + 2)T . . . x(k +N)T

]T
,22



P =




A

A2...
AN


 , H =




B

AB B... . . .
AN−1B AN−2B · · · B


 .

≻2.2.2 Cost funtionThe ost funtion is used to formulate goals for the MPC ontroller. Ithas usually additive form where the individual terms express various ontrolrequirements. The terms are multiplied by fators de�ning the relative im-portane of the ontrol goals. A basi requirement is referene traking. Theorresponding ost funtion term penalizes the traking error over a givenpredition horizon. The seond basi term is a term that spei�es atuatorbehavior. Therefore, the standard ost funtion has the following form
J (~u|x(t0), t0) =

N∑

i=0

‖Qpe(t0 + ti|t0)‖p +

Nu−1∑

j=0

‖Rpu(t0 + τj|t0)‖p . (2.14)where t0 + ti are the sampling times of predited trajetory, t0 + τi arethe sampling times of the system input, matries Qp ≥ 0, Rp > 0 areweighting matries, e(t) = r(t) − y(t) is the di�erene between the sys-tem output and referene signal (traking error), u(t) is the system input,
x(t0) is the initial information (does not neessarily be the system state) and
~u = {u(t0 + τ0|t0), . . . , u(t0 + τNu−1|t0)} is the set of future ontrol ations.The lp norm of a vetor x of length n is de�ned as

‖x‖p =
p

√√√√
n∑

i=1

|xi|
p .The ost funtion in the form (2.14) is suitable for integrating systems. An-other ost funtion whih is very often used in pratial appliations penalizesmovements of atuators instead of penalizing the positions. MPC based ona suh ost funtion are referred to as minimum movement ontrollers. Forexample

J (~u|x(t0), t0) =

N∑

i=0

‖Qpe(t0 + ti|t0)‖p +

Nu−1∑

j=0

‖Rp∆u(t0 + τj|t0)‖p , (2.15)where
∆u(t0 + τj|t0) = u(t0 + τj|t0)− u(t0 + τj−1|t0) .23



Figure 2.1: Cost funtions examples - based on l1, l∞ and l2 norm.It is lear that we an introdue various terms and ost funtions in general.For example probability terms for stohasti system, nonlinear terms, et.Beause the ost funtion is optimized, we have to be areful when addingthe terms. It has to be prepared so that there exist some reliable optimizationmethod for the resulting optimization problem. The penalty funtions (2.14)and (2.15) are based on a general p-norm but only l1, l∞ and namely l2 normsare used in the pratial appliations2, see Fig. 2.1 and Fig. 2.2 [26℄. In thelinear MPC, utilization of l1 and l∞ leads to Linear Programming (LP) andutilization of l2 norm leads to Quadrati Programming (QP). The quadratinorm ensures good performanes of the ontrol loop, as we know from thelassial LQR3 ontroller.2.2.3 ConstraintsA real di�erentiator for the MPC ontrollers is the fat that they an han-dle the system onstraints in a straightforward manner. All proesses havesome onstraints, e.g. atuator position and rate of hange onstraints oronstraints for the system output or any internal state
umin(t) ≤ u(t) ≤ umax(t) ,

∆umin(t) ≤ ∆u(t) ≤ ∆umax(t) .2Note that utilization of l1 norm leads to the dead beat ontrol.3(Linear Quadrati Regulator) 24
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Figure 2.2: An example of unonstrained MPC ontrol for di�erent lp normsin the ost funtion (l1, l1.1, l1.5 and l2).
ymin(t) ≤ y(t) ≤ ymax(t) ,

xmin(t) ≤ x(t) ≤ xmax(t) .In general, the onstraints are hard or soft:
• Hard onstraints - physial limitations of real proess, e.g. atuatorextreme positions. This type of onstraints must not be violated.
• Soft onstraints [35℄ - these an be violated though at some penalty, forexample a loss of produt quality.The soft onstraints are used whenever there are some disturbanes atingdiretly on the onstrained variable, typially all the system states and out-puts. They are very important for all pratial implementations beause thesoft onstraints ensure the feasibility of the MPC optimization problem. Thesoft onstraints an be formulated by introduing a slak optimization vari-able or vetor. Assume, for example, an upper limit for the system output,then

y(t) ≤ ymax + ε25



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15

20

25

||e
||

22

y(t)

Softening variable example

Figure 2.3: Example of soft onstraints: y(t) ≤ 5 + εis referred to as soft onstraint. The variable ε is a salar variable. to �nishde�nition of the soft onstraint, we have to introdue term ‖ε‖22 into theost funtion. The soft onstraint may be violated, espeially during thetransients. Therefore, the weighting fator for the soft onstraints must behigh enough (relative to other terms) to ensure small violation only. Wean have a ommon salar slak variable for all soft onstraints, we an havea slak variable for eah soft onstraint or for a subset of soft onstraints.Another possibility how to formulate the soft onstraints is to penalize theonstraints violation diretly in the ost funtion, i.e.
ε ≤ ymaxand to introdue the term ‖y(t)− ε‖22 into the riterion funtion. The resultwill be exatly the same as in the �rst formulation. There will be di�erenesin the QP form struture. Note also that the seond formulation introduesbox onstraints, whih may be bene�ial for the e�ieny of the optimizationalgorithm. The soft onstraints may be seen also as non-symmetri penalty(see Fig. 2.3).2.2.4 Optimization problemWe have shown that the predition of a linear system behavior an be ex-pressed by the a�ne funtion of the system inputs by using any linear model.Therefore we an fous on the state spae models without any restritionsbeause other linear models an be transformed to this form. The basi MPControl problem an be formulated as an optimization problem

~u∗ = argmin
~u

J (~u|x(t0), t0) (2.16)subjet to 26



• input onstraints
umin(t0 + ti) ≤ u(t0 + ti) ≤ umax(t0 + ti)

∆umin(t0 + ti) ≤ ∆u(t0 + ti) ≤ ∆umax(t0 + ti)

• output onstraints (usually softened)
ymin(t0 + ti) ≤ y(t0 + ti) ≤ ymax(t0 + ti)

• system state onstraints (usually softened)
xmin(t0 + ti) ≤ x(t0 + ti) ≤ xmax(t0 + ti)

• system model equations
x(ti+1) = Ax(ti) +Bu(ti) ,

y(ti) = Cx(ti) +Du(ti) .The optimization problem (2.16) with all the onstraints de�nes the MPCproblem. When using the l2 norm in the ost funtion, the MPC problem fora linear system with the linear onstraints an be transformed to a mathe-matial programming problem of the form
~u∗ = argmin

~u

1

2
~uTH~u+ ~uTF~p , s.t. G~u ≤ W + S~p , (2.17)whih is a well known quadrati programming problem. ~u is a vetor ofoptimal input trajetories

~u =
[
uT (t0) uT (t1) . . . uT (tN)

]T
,

~p is the parameter vetor ontaining, for example, system initial state x(t0),referene signal trajetories, et. The matries H and F an be found byusing de�nition of the riterion funtion (2.14) and the predition equationsfor the state spae model ((2.12) and (2.13)).2.2.5 Reeding horizon ontrolIt has been shown that the MPC ontrol problem an be transformed to anoptimization problem (2.17) whih is parameterized by a parameter vetor
~p. The result of the optimization problem at time t0 is the optimal futuretrajetory of the system input ~u∗. An immediate idea would be to apply thewhole sequene and to ompute the new trajetories at the end of preditionhorizon, i.e. at time tN . Suh MPC ontrol strategy orresponds to the openloop ontrol, without any feedbak during the predition horizon. It is lear27



that the open loop ontrol is not able to rejet the disturbanes ating onthe system and therefore suh strategy is not pratial.The standard feedbak, as we know it for the lassial ontrol methods, isintrodued by using so alled Reeding Horizon Control. In the reeding hori-zon ontrol, the optimization problem (2.17) is omputed at eah samplingperiod after having new system measurements or estimates and we applyonly the �rst ontrol ation from the vetor ~u∗. This strategy ensures thestandard feedbak ontrol in the MPC. Note that MPC is sometime alleddiretly as reeding horizon ontrol.2.2.6 Bloking strategiesIt is lear that the reeding ontrol strategy inreases on-line omplexity ofthe ontroller. We need to solve the optimization problem at eah sam-pling period, whih may not be pratial espeially for large-sale systemsor systems with fast sampling period. In some situations, we need to usedMPC even for suh appliations and therefore we have to redue the on-lineomputation omplexity. In the standard MPC formulation, the number ofoptimization variables orresponds to the number of manipulated variablesmultiplied by the predition horizon length. The degrees of freedom is oneof the dominant fators of the MPC optimization problem. We an reduethe degrees of freedom by �xing the manipulated variables to be onstantover several sampling periods. This strategy is known as bloking [13℄ andis used by many pratial implementations. Extreme bloking would be toenable only one hange over the whole predition horizon, i.e. the systeminputs an do a step hange at the beginning of the predition horizon andremain at the new position over the rest of predition horizon. Suh strategyis known as mean ontrol and its property is that the losed loop response isomparable to or slower that the open loop response. This is not a problemin a number of pratial appliations.2.2.7 O�set-free trakingIn the lassial ontrol methods, the o�set-free traking ontrol is ahievedby intruding the integral ation to the ontroller. It is lear that if the MPController uses a perfet model and there are no disturbanes ating on thesystem, we will not need to use any additional mehanism to ahieve theo�set-free traking, but this is not a realisti assumption. The integral a-tion usually ats on the traking error. The question is, how to ahieve the28



o�set-free traking property in the model preditive ontrol. There are sev-eral possibilities but we will mention only the two most important from thepratial point of view. The �rst option is to introdue the integral termating on the traking error into the ost funtion. This approah opiesstrategy from the standard PID ontrol and requires implementation of ananti-windup mehanism whih may be impratial.The seond approah is based on assumption that there are virtual distur-bane variables ating on the system. These virtual disturbanes overs thereal disturbanes, but also model inauray. This approah has been utilizedsuessfully by many industrial MPC appliations [23℄. It is usually assumedthat the virtual disturbanes are onstant over the predition horizon. Thedisturbanes an be estimated by using the augmented system state observer,These tehniques are known as Unknown Input Observer.The virtual disturbanes an be onneted to the system in a number ofways [23℄. Furthermore, the disturbanes may be desribed by a generallinear model. We will show the simplest three examples. Consider a linearmodel of a ontrolled proess
x(k + 1) = Ax(k) + Bu(k) ,

ŷ(k) = Cx(k) +Du(k) .Assume that the disturbane model an be desribed by the autonomouslinear model of the form
xd(k + 1) = Adxd(k) ,

d(k) = Cdxd(k) .

• Disturbane ating on the system output: In this ase, it is as-sumed that the real system output is given by y(k) = ŷ(k) + d(k). Theaugmented system model has the form
[

x(k + 1)
xd(k + 1)

]
=

[
A 0
0 Ad

] [
x(k)
xd(k)

]
+

[
B
0

]
u(k)

y(k) =
[
C Cd

] [ x(k)
xd(k)

]
+Du(k)

• Disturbane ating on the system state: In this ase, the distur-29



bane is assumed to at diretly on the system state, i.e.
[

x(k + 1)

xd(k + 1)

]
=

[
A Cd

0 Ad

] [
x(k)

xd(k)

]
+

[
B

0

]
u(k)

y(k) =
[
C 0

] [ x(k)

xd(k)

]
+Du(k)

• Disturbane ating on the system input: In this ase, the distur-bane is onneted to the system input, i.e.
[

x(k + 1)

xd(k + 1)

]
=

[
A BCd

0 Ad

] [
x(k)

xd(k)

]
+

[
B

0

]
u(k)

y(k) =
[
C 0

] [ x(k)

xd(k)

]
+Du(k)It is lear that we an introdue other virtual disturbane models to ahievethe o�set-free traking. The state of the augmented system model is esti-mated by a suitable observer, e.g. by a Kalman Filter. The �nal losedloop performane is diretly related to the auray of the virtual distur-bane model struture. In fat, it is not possible to �nd a good disturbanemodel for all appliations and therefore, the hoose of this model an be seenas an additional tuning parameter for the MPC ontroller. The pratialappliations are often using onstant disturbane, i.e. Ad = I.2.3 Analysis of linear MPCThe lassial feedbak ontrollers (PID) an be analyzed in a number of ways.The most important properties are the nominal performane, stability androbustness. In this setion, we will show that a similar analysis an be donefor the MPC ontroller. The di�erene between the lassial ontrol andMPC is that the MPC omputes diretly the sequene of the ontrol ationsinstead of using a ontrol law4 whih generates the ontrol ation. In fat,the optimization problem ould be seen as a ontrol law. Why the MPController annot be simple analyzed as a lassial ontroller, e.g. PID? Theanswer is - due to presene of onstraints. If we would have a ontrol law as aresult of the optimization problem, we ould perform the standard analysis.It an be shown, that we an �nd a ontrol law for eah ombination of4A ontrol law in the linear ontrol is an a�ne funtion of the system state, e.g.u(k)=Kx(k)+g. 30



feasible ative onstraints in the form
u(k) = Kix(k) + gi , (2.18)where the index i is used to denote i-th set of feasible ative onstraints.2.3.1 Unonstrained MPCIn this setion, we will show how we an derive the ontrol law for the asewhen there are no ative onstraints. Note that we an derive a ontrol lawfor any feasible ombination of ative onstraints in a similar way. Assumethat the system an be desribed by a state spae model. Then the preditionmodel for a predition horizon of length N is given by (2.12), i.e.
~y = P̄x(k) + H̄~u . (2.19)Further, assume a quadrati ost funtion de�ning the traking MPC prob-lem. The basi ost funtion is therefore given by

J(~u|x(k), k) = (~r − ~y)T Q (~r − ~y) + ~uTR~u .By de�nition of MPC, the ontrol ation is obtained by minimizing the ostfuntion over the predition horizon. In our ase without the onstraints, theoptimal input trajetory ~u∗ an be found by solving a simple least squaresproblem. By using (2.19), the optimal ontrol problem is
min
~u

J(~u|x(k), k) =
(
~r − P̄ x(k)− H̄~u

)T
Q
(
~r − P̄ x(k)− H̄~u

)
+ ~uTR~u ,with solution

~u∗ =
(
H̄TQH̄ + R

)−1
H̄TQ

(
~r − P̄ x(k)

)
. (2.20)As a result, we obtained a ontrol sequene over the predition horizon thatis parameterized by the system state at disrete time k and by the sequeneof future referene signal. By applying the reeding horizon ontrol strategy,we will get a ontrol law in the form

u(k)∗ = −Kxx(k) +Kr~r , (2.21)where the matries Kx and Kr are given by the �rst nu rows of (2.20) and
nu is the number of system inputs. Having the ontrol law (2.21), we an dothe basi analysis of the ontroller. 31



Numerial exampleAssume the unonstrained MPC traking problem for the linear system de-sribed by
A =

[
1 1

0 1

]
, B =

[
1

0.5

]
, C =

[
1 1

]
, D = 0 .The orresponding ost funtion is de�ned as

J(~u|x(k), k) = (~r − ~y)T Q (~r − ~y) + ∆~uTR∆~uwhere we used penalty for ∆~u. Then the ontrol law obtained from the leastsquares solution has the form
u(k) = −Kxx(k) +Kr~r +Kuu(k − 1) .If we use the predition horizon N = 10, weighting matrix for the trakingerror Q = I and penalty on the input movement R = krI, then we will getfor kr = 100

Kx = −
[
0.0673 0.3083

]
,

Kr =
[
0.0070 0.0111 . . . −0.0047

]
,

Ku = 0.4650 .Now we an study the ontroller behavior. For example, we might be inter-ested in the in�uene of the tuning parameter kr whih multiplies the penaltyof the atuator movements. The simulation is depited on Fig. 2.4, the stepresponse of the losed loop is depited on Fig. 2.5 and the frequeny responseon Fig. 2.6.2.3.2 In�nite predition horizonIt is known that the in�nite horizon LQR ontrol ensures reasonable stabilitymargins and reasonable ontrol performane. The disadvantage is that it doesnot enable to handle the onstraints in a systemati way. Basi version ofMPC ontroller is based on a �nite predition horizon. We an extend thepredition horizon to in�nity by de�ning the ost funtion
J (u(0), . . . , u(∞)) =

∞∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

) (2.22)Now we an split the in�nite predition horizon into the two parts, as follows55This approah is also known as a Dual Mode MPC Control.32
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Figure 2.4: Unonstrained MPC example - referene traking
• Mode 1 ontrol: a �nite horizon with N samples over whih the on-trol inputs are free variables and they are determined by solving theoptimization problem.
• Mode 2 ontrol: the subsequent in�nite horizon over whih the ontrolinputs are determined by a state feedbak law: u(k) = −Kx(k). Thegain matrixK is the feedbak gain that ensures the unonstrained losed-loop stability.Then, the ost funtion (2.22) an be expressed in the form

J (~u|x(0)) =
N−1∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
+Ψ(x(N)) . (2.23)The �rst part of (2.23) is a standard form of �nite horizon ost funtion andthe last term, Ψ(x(N)), is known as a terminal penalty term and orrespondsto the value of the ost funtion on the interval 〈N, ∞), i.e.

Ψ(x(N)) =
∞∑

k=N

(
x(k)TQx(k) + u(k)TRu(k)

)
. (2.24)Using the quadrati ost funtion (2.22), it is straightforward to show that

Ψ(x) is a quadrati funtion
Ψ(x) = xTΨx Ψ ≥ 0 , (2.25)33
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Figure 2.5: Unonstrained MPC example - step responsewhere the matrix Ψ is the solution of the disrete-time algebrai Riatiequation
Ψ = ATΨA− ATΨB

(
R+ BTΨB

)−1
BTΨA+Q (2.26)

K =
(
R+ BTΨB

)−1
BTΨA . (2.27)The in�nite horizon ost funtion (2.22) an be now rewritten to the �nalform

J (~u|x(0)) =

N−1∑

k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
+ x(N)TΨx(N) . (2.28)It was shown that the in�nite horizon ost funtion (2.22) an be writtenas (2.28) where Ψ is the appropriate solution of (2.26). The �rst part ofthe riterion is minimized using a standard on-line optimization tehnique(e.g. quadrati programming) inluding the system onstraints. In the se-ond part, it is onsidered that the system is ontrolled by the LQ optimalstate feedbak. Note that the terminal penalty term is the basi tool whenformulating and proving the stability of the MPC ontroller.2.3.3 StabilityThe stability of MPC ontroller annot be simply analyzed as it an be donein the lassial ontrol methods. The properties of the MPC losed loopare in�uened by all tuning parameters, e.g. by ost funtion form, predi-tion and orretion horizon length, weighting matries, et. We an do the34
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Figure 2.6: Unonstrained MPC example - frequeny responseanalysis if there are no ative onstraints or for a seleted feasible set of a-tive onstraints. The problem is that the MPC ontroller an be seen as anonlinear ontroller. In fat, it an be shown, that the linear MPC ontrolis based on swithing the a�ne ontrol laws, where the number of ontrollaws orresponds to the number of all feasible ombinations of ative sets.This number may be huge even for relatively small number of onstraints.Therefore, it is lear that the analysis may not be so easy, or even impossible.The stability of the MPC ontrol is not ensured in its basi formulation.On the other hand, it is fair to say that the basi MPC formulation givesvery good results and provides a good degree of stability and robustness inpratial appliations. We will disuss the basi tools whih an be used toensure the nominal stability of the ontroller during the design stage. Thereare several ways and the most important are the following:
• Terminal equality onstraints: [20℄ If the system origin is stable, thenthe stability an be ensured by a terminal equality onstraints on thesystem state at the end of the predition horizon, i.e. x(k + N) = 0.It is lear that this an be generalized to x(k +N) = xe, where xe is astable equilibrium.
• Terminal ost funtion: [9℄ The main idea is to add a terminal ost termto the ost funtion.
• Terminal onstraint set: The terminal equality onstraint an be gener-alized. The idea is based on assumption that there exist a subspae in35



the system state spae for whih it holds that if the system state entersthis subspae, then it will stay inside at all future time without violatingthe onstraints.From the pratial point of view, the most important is the ombination ofthe last two and therefore, we will fous on them. Before formulating an MPCalgorithm that ensures the nominal stability, we will de�ne positively invari-ant set, admissible positively invariant set and maximal admissible positivelyinvariant set [10, 30℄:De�nition 1 A positively invariant set Ω is a region of state spae with theproperty that all state trajetories starting from an initial ondition withinthe set remain within the set at all future instants.De�nition 2 An admissible positively invariant set Ω is a region of statespae with the property that all state trajetories starting from an initialondition within the set remain within the set at all future instants and allonsidered onstraints will be satis�ed.De�nition 3 The maximal admissible positively invariant set (MAS) is aregion of state spae of all possible initial states so that all state trajetoriesstarting from an initial ondition within the set remain within the set at allfuture instants and all onsidered onstraints will be satis�ed.Formally, an admissible positively invariant set Ω an be de�ned as
(A− BK)x(k) ∈ Ω ∀x(k) ∈ Ω (2.29)

mmin ≤ Mx(k) ≤ mmax ∀x(k) ∈ Ω . (2.30)The MAS sets an be approximated (if we annot ompute them exatly) bya polytopi or ellipsoidal sets. An example of polytopi MAS and ellipsoidalMAS are depited on Fig. 2.7, where Ωf is a set of all feasible initial states,whih an be driven into the MAS Ω withing the given predition horizon.Now assume MPC ontrol using quasi-in�nite predition horizon
J (~uk|x(k), k) = ‖x(k +N)‖2Ψ +

N−1∑

i=0

‖x(k + i)‖2Q+ ‖u(k + i)‖2R , (2.31)with onstraints
G~u ≤ W + Sx(k) (2.32)and additional, stability, onstraints
x(k +N) ∈ Ω (2.33)36
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Figure 2.7: An example of polytopi and ellipsoidal MAS (Ω) and set of allfeasible initial onditions (Ωf) [27℄where Ω is MAS (or admissible positively invariant set) for the ontrolledsystem. To prove the stability, we need to �nd a Lyapunov funtion. It isnot a surprise, that a nature andidate for the Lyapunov funtion is the ostfuntion (2.31), i.e.
V (k) = J (~u∗

k|x(k), k) . (2.34)Assume that the optimal solutions at time k and k + 1 are
~u∗
k =

[
u∗(k|k) u∗(k + 1|k) . . . u∗(k +N − 1|k)

]
,

~u∗
k+1 =

[
u∗(k + 1|k + 1) u∗(k + 2|k + 1) . . . u∗(k +N |k + 1)

]and assume that at time k, there exist an estimate of the optimal ontrolsequene for time k + 1, denoted by ~ushifted
k+1 , i.e.

~ushift
k+1 =

[
u(k + 1|k) u(k + 2|k) . . . u(k +N |k)

]
. (2.35)From the de�nition, it holds that

V (k + 1) = J (~u∗
k+1|x(k + 1), k + 1) ≤ J

(
~ushifted
k+1 |x(k + 1), k + 1

) (2.36)and we an ontinue
V (k + 1) ≤ J

(
~ushifted
k+1 |x(k + 1), k + 1

)

≤ J (~u∗
k|x(k), k)− ‖x(k|k)‖2Q − ‖u(k|k)‖2R − ‖x(k +N |k)‖2Ψ

+ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ .It holds that
V (k) = J (~u∗

k|x(k), k)and therefore
V (k + 1)− V (k) ≤ −‖x(k|k)‖2Q − ‖u(k|k)‖2R − ‖x(k +N |k)‖2Ψ

+ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ .37



The Lyapunov funtion must satisfy ondition V (k + 1) − V (k) ≤ 0. It islear that this ondition will be satis�ed if
‖x(k +N |k)‖2Ψ ≥ ‖u(k +N |k)‖2R + ‖x(k +N + 1|k)‖2Ψ (2.37)If there exist a ontrol law for whih the ondition (2.37) is satis�ed, then

V (k) is a Lyapunov funtion and the reeding horizon MPC ontrol sequenewill stabilize the system. The two basi possibilities are the following:
• u(k + i) = 0 , i ≥ N : Then, the ondition (2.37) leads to the Lyapunovequation

ATΨA−Ψ ≤ 0i.e. a ondition, that the system is stable and the weighting matrix Ψ ofthe terminal penalty term is a Lyapunov equation solution. The set Ωused in (2.33) is an admissible positively invariant set for the open loopsystem.
• u(k + i) = −Kx(k + i), i ≥ N : Then, the ondition (2.37) leads to theAlgebrai Riati Equation, i.e.

(A− BK)T Ψ(A− BK) +KTRK ≤ Ψ .In this ase, the ontrol law K and weighting matrix Ψ must satisfythe algebrai Riati equation and Ω utilized in (2.33) is orrespondingadmissible positively invariant set.It has been shown that the stability an be ensured (and proved) by addinga terminal penalty term to the ost funtion and a terminal onstraints set(known also as stability onstraints). This onept an be seen as Dual modeontrol startegy where:
• Mode 1: The system inputs are determined by solving the optimizationproblem for the �nite predition horizon.
• Mode 2: The system inputs are determined by a state spae feedbaklaw. This mode is never applied beause of the reeding horizon strategy.The presented onept an be seen as a tool for ensuring stability for gen-eral formulation of linear MPC. We should note that, in general, we do notneed to follow the onept to ensure the stability of MPC for pratial ap-pliations. There are many other ad-ho solutions ensuring the reasonablebehavior but usually, these methods are tailored for partiular MPC formu-lations or appliations and do not hold for general MPC formulation.38



The MPC ontrol is based on solving the onstrained optimization problem ineah sampling period. Therefore, it is also neessary to analyze the feasibilityof this optimization, espeially if the reeding horizon ontrol is onsidered.It an be shown that if the problem is feasible for the initial system state, thenit is feasible in all subsequent sampling periods (see Fig. 2.7 for illustration).The proof an be found in the literature.2.3.4 RobustnessAll systems models used for ontrol design in pratial appliations havesome unertainties. These unertainties are aused by disturbanes, by ina-urate identi�ation, inorret model struture, due to model simpli�ation,et. Therefore, it is lear that the model does not desribes the ontrolledsystem aurately and the ontroller must be robust with respet to theseinauraies. Robustness is a fundamental question for all feedbak ontrolsystems. Any statement about the robustness must be onneted with aspei� unertainty range and to a spei� performane riteria. It is learthat the robust ontrol design may be a very di�ult and hallenging task.Therefore, for MPC we will present only some of the basi ideas. In therobust ontrol design we have to onsider namely:
• Unertainty desription and modeling
• Robust ontrol design
• Robust analysisThe �rst and the last items may be relative simple when ompared to therobust ontrol design, whih may be a hallenge, or even impossible.Unertainty desriptionThere are several approahes how to desribe the unertainties of the on-trolled system or inaurate model. Seletion of an approah depends mainlyon the ontroller design method. For example, if a ontroller design methodis based on frequeny domain, the unertainties should be also based on thefrequeny domain. In the MPC ontext, the most important approahes arethe following two [7℄:
• The system behavior is desribed by a set of models, for example, thetrue plant Σ0 belongs to a set S, Σ0 ∈ S, where the set S is a givenfamily of LTI systems. Mathematially

x(k + 1) = Ax(k) + Bu(k) , (A,B) ∈ S , (2.38)39



where
S =

{
h∑

i=1

ηi (Ai, Bi) ;
h∑

i=1

ηi = 1, ηi ≥ 0

}
.

• Unmeasured disturbane signal w(k) ats on the system, where w(t) ∈

W and W is a priory known set. Mathematially
x(k + 1) = Ax(k) +Bu(k) + Fw(k) , w(k) ∈ W (2.39)Robust MPC designIn the MPC robust ontrol design, we need to formulate an optimizationproblem that ensures the robustness. We de�ned two lasses of unertaintiesthat are often used in the linear MPC. When designing the robust MPC,we an follow the onept presented in the setion about the stability, i.e.the dual mode ontrol. First, we need to de�ne robust admissible positivelyinvariant set:De�nition 4 A robust admissible positively invariant set Ω is a region ofstate spae with the property that all state trajetories of the system ontrolledby a state feedbak starting from an initial ondition within the set remainwithin the set at all future instants for all onsidered perturbations and anyof onsidered onstraints is not violated.An example of a robust admissible positively invariant set is depited onFig. 2.8. Seondly, we have to formulate a suitable ost funtion as a funtionof the unertain parameter, i.e.

J (~uk|x(k), θ(k), k) , (2.40)where θ(k) is the unertain parameter, for whih we know that θ(k) ∈ Θ. Inase (2.38), the riterion funtion will be parameterized by η, i.e.
Θ =

{
η :

h∑

i=1

ηi = 1, ηi ≥ 0

}
, (A,B) ∈ S ,and in ase (2.39)

Θ = W ,i.e. θ(k) = w(k). Assume that there exist a ontrol law u(k) = −Kx(k) forwhih we an found a robust admissible positively invariant set Ωrobust for
θ(k) ∈ Θ and a orresponding terminal penalty term. Then the robust MPCoptimization problem an be de�ned as min-max optimization [15℄

~u∗
k = argmin

~uk

{
max
~θk

J
(
~uk|x(k), ~θk, k

)}40
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Figure 2.8: Example of admissible positively invariant set ΩA, robust ad-missible positively invariant set ΩW for unertainty desription (2.39) andsystem state trajetory unertainty (red sets) [27℄.subjet to the onstraints
~uk ∈ Ukand robust stability onstraints (or terminal onstraints)

XN
k ∈ Ωrobust ,where x(k + N) ∈ XN

k and XN
k is a set of all possible values of the systemstate at the end of predition horizon. An illustrative example of the stabilityonstraints for the ase (2.39) is depited on Fig. 2.9.The min-max approahes have several important drawbaks: (i) they areomputationally demanding (based on dynami programming), (ii) the re-sulting ontrol ation may be too onservative. Of ourse there exist manyother formulations of robust MPC. For example, it an be shown, that in-stead of looking for the optimal ontrol sequene, we should be looking for asequene of the ontrol laws κk+i (x(k + i), k) when dealing with the robustMPC ontrol. A better formulation would be to perform for eah step i in thepredition horizon maximization over θ(k+ i) and immediately minimizationover u(k+ i). Another important question is whether the onstraints shouldbe satis�ed for the nominal plant only or for all possible perturbations. Allthese questions have been disussed by many authors and the pratial robust41
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0 (orange) [27℄.MPC formulation is still an area of ative researh.2.4 Hybrid systemsHybrid systems are a speial lass of dynamial systems that ombines bothontinuous and disrete-value variables. The main omponents of the hybridsystems are the ontinuous dynamis (based on �rst priniple), logial om-ponents (swithes, automate, logial onditions, et.) and interonnetionsbetween the logi and dynami. The hybrid systems an be used to modelsystems with several operation modes where eah mode has di�erent dynam-ial behavior. A simple example of a hybrid system is a piee-wise a�ne(PWA) system, de�ned as

x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) +Diu(k) + giif [
x(k)
u(k)

]
∈ Ti, i = 1, 2, . . . , n .The PWA systems enables to desribe a large lass of pratial appliationsand are very general. Unfortunately, they are not diretly suitable for theanalysis and synthesis of optimal ontrol problems. Another useful frame-work for the hybrid systems is based on Mixed Logial Dynamial (MLD)models [8℄. These models transform the logial part of a hybrid system intothe mixed-integer linear inequalities by using Boolean variables. The basi42



form of the MLD system is given by [8℄
x(k + 1) = Ax(k) +Bu(k) +B2δ(k) +B3z(k) ,

y(k) = Cx(k) +Du(k) +D2δ(k) +D3z(k) ,subjet to
E2δ(k) + E3z(k) ≤ Eu(k) + E4x(k) + E5 ,where x(k) is a ombined ontinuous and binary state, u(k) and y(k) arethe system inputs and outputs (ontinuous and binary), δ(k) are auxiliarybinary variables and z(k) are auxiliary ontinuous variables. Now, we ande�ne the optimal ontrol problem for PWA system as

J (~uk|x(k), k) = ‖Ψx(k +N)‖p +
N−1∑

i=0

‖Qx(k + i)‖p+ ‖Ru(k + i)‖p ,(2.41)subjet to
x(k + 1) = Aix(k) + Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi

if

[
x(k)

u(k)

]
∈ Ti, i = 1, 2, . . . , n

u(k) ∈ UThe PWA system an be represented by a MLD model and therefore, theoptimal ontrol problem orresponds to the solution of mathematial mixed-integer program. In ase of PWA system, if the ost funtion is quadrati,then the optimization problem leads to Mixed-Integer Quadrati Programand if the the ost funtion is based on l1 or l∞ norm, the optimizationproblem leads to Mixed-Integer Linear Programming.2.5 Optimization algorithmsWe will onlude this hapter about the linear model preditive ontrol bya brief disussion about suitable optimization methods for solving the opti-mization problems. It has been shown that the MPC ontrol problem anbe formulated as an optimization problem that is solved at eah samplingperiod. Therefore, the performane of the optimization algorithm in MPC isritial. Assume a QP problem in the form
~u∗ = argmin

~u

1

2
~uTH~u+ ~uTF~p , s.t. G~u ≤ W + S~p . (2.42)43



Diret solution to this QP by using general QP solver an be too slow forsome appliations and therefore this approah is suitable only for relativelyslow systems. The modern QP solvers are based on ative set or interior-point approah. The ative set solvers are iterative algorithms. In eahiteration, we are testing the optimality onditions for atual working set ofative onstraints. If the working set of ative onstraints does not lead tothe optimal solution, then we modify the set by adding or removing the a-tive onstraints. In general, the ative set solvers are suitable for relativelysmall problems but they are very e�ient in pratie, espeially in ombina-tion with warm-starting strategy. The interior-point methods are based onbarrier funtions. The onstraints are added to the riterion funtion in theform of a barrier whih transforms the original problem to an unonstrainedoptimization. The interior-point methods are iterative (solution to optimal-ity onditions) and usually require only a small number of iterations whenompared to ative set solvers. However, the individual iterations are moreomputationally expensive.If we need extremely fast sampling periods in the MPC, we an use multi-parametri expliit solution [5, 6℄. These optimization algorithms have o�-line and on-line parts. The MPC optimization problem is solved expliitlyin the o�-line part. The expliit solution divides the optimization problemparameter spae into a number of regions where eah region has assoiateda ontrol law. A partiular region orresponds to a feasible ombination ofative onstraints. All these regions and the ontrol laws are stored for theon-line part. In the on-line part at eah sampling period, we simply onstrutthe parameter vetor and �nd the orresponding region. Then we apply theassoiated ontrol law. Unfortunately, the multiparametri expliit solutionis appliable for small systems only due to storage demands. The omplexityof parametri expliit solvers are ompared with the ative set solvers in [12℄.Another way how to improve performane of the MPC optimization is toexplore the struture of the MPC optimization problem and use this infor-mation to design an e�ient solver. For example, there are two ways how toadd the soft onstraints to the optimization problem. One of them leads tosimple6, or box, onstraints. if all the onstraints in the optimization problemare box, then we an use this information to implement an e�ient solver,e.g. based on gradient projetion methods or their modi�ations.6The box onstraints are de�ned so that we have variables with upper and lower limits,e.g. xmin ≤ x ≤ xmax. 44



Chapter 3 Nonlinear Model Preditive Control
Today's proesses need to be ontrolled under tight performane spei�a-tions whih an be only met if the ontroller works preisely. Nonlinear modelpreditive ontrol (NMPC) is extension of the well established linear predi-tive ontrol to the nonlinear world. Linear model preditive ontrol refers toMPC algorithms in whih the linear models are used. The nonlinear modelpreditive ontrol refers to MPC shemes that are based on the nonlinearmodels. Beause NMPC enables the optimal ontrol of onstrained nonlin-ear systems, it is one possible andidate as an advaned ontrol sheme forindustrial proesses. The nonlinear model preditive ontrol has been inten-sively studied sine the 90s. The fundamentals of NMPC are revieved forexample in [3, 32, 4℄.3.1 Formulation of nonlinear MPCThe �rst step in NMPC design is obtaining an aurate system model. Usu-ally, in the pratial appliations, we are able to �nd a model based onphysial laws. The model should be as aurate as possible to ensure reason-able ontrol performane. Note that the modeling phase in NMPC design isusually the most di�ult part. Consider a ontinous-time nonlinear systemof the form

ẋ(t) = f (x(t), u(t))

y(t) = h (x(t), u(t))where x(t) is the system state, u(t) is the system input and y(t) is the systemoutput. The seond step in the model preditive ontrol design is de�nitionof the ost funtion. The general objetive funtion for the nonlinear systemon in�nite predition horizon has the integral form
J (u(t), x(t0)) =

∞∫

t0

L (x(t), u(t), t) dt , (3.1)



where the funtion L (x(t), u(t), t) de�nes the ontrol objetives. This fun-tion re�et the basi requirements on the ontroller performane and is oftende�ned as a sum of weighted quadrati funtions of traking error and ontrolsignal, e.g.
L (x(t), u(t), t) = ‖r(t)− y(t)‖2Q + ‖u(t)‖2R , (3.2)where r(t) is a known referene trajetory. This is the basi form and ismodi�ed with respet to a partiular appliation and atual system require-ments. The ost funtion an be split into a �nite predition horizon termand a terminal ost as follows

J (u(t), x(t0)) = Ψ (x(tN)) +

tN∫

t0

L (x(t), u(t), t) dt . (3.3)where the terminal ost is ideally given by
Ψ(x(tN)) =

∞∫

tN

L (x(t), K (x(t)) , t) dt (3.4)Assume that the ontrol signal at the time interval t ∈ 〈tN ,∞〉 is givenby a ontrol law K (x(t)). The general nonlinear MPC problem an beformulated as a nonlinear optimization problem de�ned as minimization ofthe ost funtion
min
u(t)

J (u(t)|x(t0)) , (3.5)subjet to onstraints
ẋ(t)− f (x(t), u(t)) = 0 ,

x(t0)− x0 = 0 ,

g (x(t), u(t)) ≤ 0 , t ∈ (t0, tN) ,

u(t) ∈ U , t ∈ (t0, tN) ,

x(t) ∈ X , t ∈ (t0, tN) ,

x(tN) ∈ Ω ,where the last onstraint is the stability onstraint. the optimal ontroltrajetory at the time horizon t ∈ 〈t0, tN〉 an be obtained by solving theabove nonlinear onstrained optimization problem. The expliit solution isnot usually possible and therefore the problem has to be solved by a suitablenumerial method. 46



3.2 Analysis of nonlinear MPCIn this setion we will brie�y disuss the basi stability results. There exist anumber of shemes ensuring the stability of the resulting ontrol system [17℄.Most of them modify the MPC ontrol sheme by adding a terminal on-straints to the optimization problem and/or terminal osts to the objetivefuntion. The terminal ost approximates the in�nite horizon ontrol andis usually onneted with a loal ontroller. The terminal onstraints areseleted so that the system state lies in the domain of attration of the loalontroller. The prinipal idea to state the onditions for stability is to seletthe objetive funtion as a Lyapunov funtion of the losed-loop system, i.e
V (tN , x(t0)) = Ψ (x(tN)) +

tN∫

t0

L (x(τ), u(τ)∗, τ) dτ (3.6)The stability onditions are summarized in the following Theorem:Theorem 1 Suppose that Ψ(xe) = 0, xe ∈ Ω, Ω ⊆ X is a losed set and theoptimization problem is feasible at t0. Then the nominal losed-loop systemis asymptotially stable for any time δ ∈ (t0, tN) if there exists a loal ontrollaw u(t) = κ(x(t)) for t ≥ tN with ue = κ(xe) suh that:
δΨ(x(t))

δx(t)
ẋ(t) + L (x(t), u(t), t) ≤ 0, x(t) ∈ Ω, κ (x(t)) ∈ U (3.7)The proof of Theorem an be found in the literature. Note that in general,it is not easy to �nd a terminal penalty Ψ and terminal set Ω satisfyingonditions in the Theorem.3.3 Numerial methods for nonlinear MPCA ommonly used approah to solve the problem (3.5) is reformulation toa �nite dimensional nonlinear programming problem (NLP) by a suitableparameterization. The most reent researh in the nonlinear MPC suggeststo perform this parameterization by using Diret Multiple Shooting method[11, 16℄. The nonlinear programming problem an be solved by iterativeSequential Quadrati Programming approah (SQP). To �nd the optimal so-lution to the de�ned NLP, it is usually neessary to perform several iterationswhih may be a time onsuming task. Therefore, it is suggested to performonly one iteration in eah sampling period in real-time appliations and touse a sub-optimal instead of the optimal solution [16℄.47
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Figure 3.1: Diret single shooting (left) and diret multiple shooting (right)There are two important diret approahes to solve the nonlinear optimiza-tion problems in the real-time optimizations:
• Diret single shooting is a basi approah and is similar to the ap-proah used by the standard linear model preditive ontrol. At theinitial time, the numerial integration is used to obtain the preditedtrajetories as a funtion of manipulated variable for the predition hori-zon, see Fig. 3.1. Having these trajetories, one an perform one iterationof SQP proedure.
• Diret multiple shooting [11℄ is based on re-parameterization of theproblem on the predition horizon. The piees of system trajetoriesare found on eah time interval numerially together with sensitivitymatries, see Fig. 3.1. The optimization problem is then augmented byauxiliary onstraints - ontinuity onditions.Suh parameterization an be regarded as simultaneous linearization anddisretization. One advantage of the multiple shooting methods is that theoptimization problem is sparse, i.e. the Jaobians in the optimization prob-lem ontain many zero elements whih makes the QP subproblem heaperto built and to solve. The simulation (solution to the model) and optimiza-tion are performed simultaneously and the solution to the problem an beparallelized. The diret multiple shooting approah parameterizes the opti-mization problem by a �nite set of parameters, i.e. by system states xi(ti)(auxiliary optimization variable) and system inputs u(ti). The key idea of�nite parameterization is to �nd the sensitivity matries (or linearization) sothat

δxi(ti+1) ≈ Φ(ti+1, ti)δxi(ti) + Γ (ti+1, ti) δui(ti) ,

δxi+1(ti+1) = δxi(ti+1) 48



where Φ(ti+1, ti) and Γ (ti+1, ti) are sensitivity matries de�ned by
Φ(t, t0) =

∂x(t)

∂x(t0)
, Γ(t, t0) =

∂x(t)

∂u(t0)
. (3.8)The sensitivity of the system state trajetory to the initial ondition an beomputed by solving the following di�erential equation

Φ̇(t, t0) =
∂f (x(t), u(t))

∂x(t)
Φ(t, t0) , Φ(t, t0) =

∂x(t0)

∂x(t0)
= I (3.9)and the sensitivity of the system trajetory to the system input at time t0 isgiven by

Γ̇(t, t0) =
∂f (x(t), u(t))

∂x(t)
Γ(t, t0) +

∂f (x(t), u(t))

∂u(t)
1(t− t0) ,where 1(t− t0) is the unit step de�ned as

1(t− t0) =

{
0 t < t0
1 otherwiseand the initial ondition is

Γ(t, t0) =
∂x(t0)

∂u(t0)
= 0 (3.10)Calulation of sensitivity matries for the nonlinear system requires solutionto a set of di�erential equations simultaneously with the system trajetory.This may be a onsuming task.It was shown how the optimization problem an be parameterized by a �nitenumber of parameters in the multiple shooting approah. Using these results,the ontrol problem (3.5) an be formulated as mathematial programming

min
u(ti),xi(ti)

N−1∑

i=0

Li (xi(ti), u(ti), ti) + Ψ (xN(tN)) (3.11)subjet to onstraints
xi+1(ti+1)− xi(ti+1) = 0 , t ∈ (0, N − 1) ,

x0(t0)− x(t0) = 0 ,

g (xi(ti), u(ti)) ≤ 0 , t ∈ (0, N) ,

u(ti) ∈ U , t ∈ (0, N) ,

xi(ti) ∈ X , t ∈ (0, N) ,

xN(tN) ∈ Ω ,49



Figure 3.2: Timing diagram for real-time optimizationsThe ost funtion at time interval t ∈ (ti, ti+1) is equal to
Li (xi(ti), u(ti), ti) =

ti+1∫

ti

L (xi(τ), u(τ), τ) dτ (3.12)and xi(ti+1) is solution of the nonlinear system at time ti+1 with initial on-dition xi(ti). The resulting nonlinear programming problem (3.11) an besolved, for example, by a suitable SQP framework [24℄.The model based preditive ontrol algorithms are usually formulated withreeding horizon where the optimization problem is re-alulated in eah sam-pling period and only the �rst ontrol ation is applied to the system. A verye�ient sheme has been proposed in [16℄. The timing sheme of this ap-proah is depited on Fig. 3.2. There are two main phases: preparation phaseand feedbak phase. During the preparation phase, the algorithm alulatesas muh as it is possible without knowledge of data that will be available atthe beginning of the next sampling period. The feedbak phase takes newmeasurement and alulates the ontrol ation that an be immediately sentto the system.
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