
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Agent Technology and its Applications

Učební texty k semináři

Autoři:

doc. Dr. Ing. Michal Pěchouček, M.Sc. (ČVUT v Praze)
Ing. Michal Jakob, Ph.D. (ČVUT v Praze)
Dr. rer. nat. Peter Novák (ČVUT v Praze)
Ing. Martin Rehák, Ph.D. (ČVUT v Praze)
Ing. David Šišlák (ČVUT v Praze)
Ing. Jiří Vokřínek (ČVUT v Praze)

Datum:

22. března 2010

Centrum pro rozvoj výzkumu pokročilých řídicích a senzorických technologií

CZ.1.07/2.3.00/09.0031

TENTO STUDIJNÍ MATERIÁL JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM

FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Tady není nic.

Contents

1 Introduction to Agent-based Computing and Multi-agent

Systems 2

1.1 Formal Models of Agent Based Systems 4
1.2 Agent Architectures . 6

1.2.1 Reactive Agents . 6
1.2.2 Deliberative Agents 7

1.3 Research Challenges and Applications of Agent Based Com-
puting . 9

2 Introduction to Programming Autonomous Agents and Multi-

agent Systems 13

3 Agent Platforms 15

3.1 FIPA Specifications . 16
3.2 FIPA Management Reference Model 17
3.3 Additional Platform Services 18

4 Agent-based Modeling and Simulation 19

4.1 Simulation Structure . 19
4.2 Simulation Execution Cycle 20
4.3 Advantages . 20
4.4 Platforms and Tools . 21

5 Agent Applications in Traffic and Transportation 22

5.1 Simulating Air Traffic Management in AgentFly 22
5.2 Collision Avoidance Algorithms in AgentFly 23

6 Agent Applications in Network Security Monitoring 25

6.1 Motivation . 25
6.2 Attacks . 25
6.3 Defence Strategies . 26

7 Agent Applications in Production Planning 28

7.1 Agent-based Planning for Industry 28
7.2 Industrial Agent-based Applications 29

Chapter 1

Introduction to Agent-based Computing and
Multi-agent Systems

Agent-based computing is a subfield of computer science and artificial intel-
ligence, that studies the concepts of autonomy of individual computational
processes (running either software applications or hardware robots) and inter-
action between such heterogeneous autonomous process. Agent-based com-
puting leverages results from mathematical logics, game theory, mechanism
design, machine learning, automated planning and others. Multiagent sys-
tems are collections of autonomous agents, which either simulates or control
distributed cooperative/competitive systems. Agent technology is a collec-
tion of methods, algorithms and software tools that support development of
mutliagent systems.
The research field of autonomous agents and multi-agent systems (also
referred to as agent-based computing), a specific sub-field of computer
science and artificial intelligence, investigates the concepts of autonomous
decision making, communication and coordination, distributed planning and
distributed learning but also game-theoretic aspects of competitive behaviour
or logical formalization of higher level knowledge structures representing in-
teraction attitude of actors in multi-actor environment. Agent technology

provides a set of tools, algorithms and methodologies for development of
distributed, asynchronous intelligent software applications that leverage the
above listed theories.
As the society is moving closer to the network era linking many users, hard-
ware assets and hosted computational process, there is a tremendous appli-
cation potential of this research field. E.g. adaptive, real-time coordination
capability in robotics is very important for aerial vehicles providing surveil-
lance and search in rescue operations, natural disasters (like fires) or security
applications (providing live feed of larger protected areas). Multi-agent al-
gorithms can also provide novel mechanisms for specialized applications in
air-traffic control, large cities traffic modelling and planning or intelligent
building design. These applications support or control the interaction of
large number of non-trivial interacting entities (be it air planes, cars, or sen-
sors in the building). Agent-based computing can also support peer-to-peer
knowledge and data sharing in social networks, by allowing intelligent agents

to negotiate various data confidentiality policies, and thus support wider ex-
ploitation of knowledge and experience. Adoption of agent-based techniques
in these domains not only facilitates control of distributed systems, but also
provide scalability, robustness and reliability, which cannot be achieved by
centralized control. Even though there has been an early deployment of
agents in industry, a wider adoption of this novel and innovative concept
remains a great challenge for researchers and early adopters.
A multi-agent system is a decentralized computational (software) system,
often distributed (or at least open to distribution across hardware platforms)
whose behavior is defined and implemented by means of complex, peer-to-
peer interaction among autonomous, rational and deliberative units – agents.
An agent is an encapsulated computational (or physical, even human) sys-
tem, that is situated in some environment, and that is capable of flexible,
autonomous behavior in order to meet its design objective [48]. The agent
can exists on its own but often is a component of a multi-agent system.
There are the following key properties of an autonomous intelligent agent:

• Autonomy – the agent is accountable for execution of its own actions and
is not controlled from outside. Often the agent’s reasoning mechanism
that selects the action to be executed is unknown from outside of the
agent (unlike e.g. objects).

• Reactivity – the agent is able react qucikly to the events in the environ-
ment and to the requests from other agents, it is able to reconsider her
activity according to the change of the environment in timely fashion.
Often the longest reasoning cycle of an agent needs to perform faster
than the fastest change in the environment

• Intentionality – the agents is able to maintain her long term intention
encoded by the agent’s designer and is capable to consider both the long
term intentions and immediate reactive inputs when selecting the next
action.

• Social capability – the agent is able to interact, collaborate, form teams
but also to perferm different levels of reasoning about the other agents.

The concept of agents has been successfully applied in the three following
ways: (i) agents as design metaphore, providing the designers and developers
with a way of structuring an application around autonomous, communica-
tive elements; (ii) source of technologies, providing specific techniques and
algorithms for dealing with interactions in dynamic and open environments
and (iii) simulation models, providing strong models for representing complex

3

and dynamic real-world environments. The concept of agents is in either of
the use models considered at the following design levels:

• organization-level : related to the agent communities as a whole (organi-
zational structure, trust, norms, obligations, self-organisation, etc.);

• interaction-level : concern communication among agents (languages, in-
teraction protocols, negotiations, resource allocation mechanisms);

• agent-level : concern individual agents (agent architecture, reasoning,
learning, local processing of social knowledge).

1.1 Formal Models of Agent Based Systems

In the following we will introduce the concept of agents formally. Let us have
possible states of the environment: S = {s, s′, . . .}; possible actions that can
transform the environment:
Ac = {α, α′, . . . }; simple model of the environment τ : S ×Ac → ℘(S) and
B, G as a set of agents beliefs and goals respectively. In such a model the
stateless purely, reactive agents are specified by a function with a signature
as Ag : S → Ac, the stateful agents are defined as Ag : S∗ → Ac, the
goal-directed, knowledgeable agents are defined as Ag : B × G → Ac; and
the autonomous agents is defined as Ag : S∗ → ℘(Ac).
Given the model of the history of an agent operation A in the environment

r : {s0 −→α0
s1 −→α1

s2 −→α2
. . . −→α3

sn}

we introduce R – characteristic behavior – as the set of all finite possible
histories of agents behaviour.
The environment in which the agent operates is either

• deterministic, history independent: τ : S ×Ag → S

• non-deterministic, history independent: τ : S ×Ag → ℘(S)

• history dependent environment Env = 〈S, s0, τ〉

– RAc ⊆ R so that it finishes with an action,

– REnv ⊆ R so that it finishes with an environment state

τ : RAc → ℘(S)

• model of agents that inhabit the system:

Ag : REnv → ℘(Ac)

4

The characteristic behavior R of an agent Ag in an environment Env is
R(Ag, Env). If we consider only finite histories, the sequence
r : {s0 −→α0

s1 −→α1
s2 −→α2

. . . −→α3
sn} represents a behavior of an agent Ag in an

environment Env provided that:

• s0 is an initial state of Env

• α0 ∈ Ag(s0)

• ∀n > 0 :

sn ∈ τ((s0, α0, . . . sn−1, αn−1)) and

αn = Ag((s0, α0, . . . sn−1, αn−1, sn))

Two agents are behaviorally equivalent iff R(Ag1, Env) = R(Ag2, Env)

Rational agents are motivated to optimize their utility functions. Agent’s
short-term utility function u : S → R labels the agent’s individual states -
denoting how profitable is it for the agent to bring about the particular state.
Agent’s long term utility function −− u : R → R assigns a utility not to
the individual states, but to the specific runs. The probability of a run to
happen is defined as follows:

P (r|Ag, Env)
∑

∀r:r∈R(Ag,Env)

P (r|Ag, Env) = 1

Based on the definitions above, the rational agent is maximizing its expected

utility u(r)P (r|Ag, Env) – a measure that represents a probability of all
individual runs that can happen and the profit they may provide:

Agrational = arg max
Ag∈AG

∑

∀r:r∈R(Ag,Env)

u(r)P (r|Ag, Env).

Rationality is a complex concept and can be made more specific in restricted
scenarios. Let us define the concept of bounded rationality as

• AGm = {Ag|Ag ∈ AG and Ag can be implemented on machine m}

• AGp = {Ag|Ag ∈ AG and Ag can be implemented so that for any input
it gives polynomially bounded output}

and the concept of calculative rationality as

• AGCR = {Ag|Ag ∈ AG and Ag can be implemented so that for any
reaction in the environment it provides an output faster than that the
environment changes again}.

5

The performance objective of the given agent is given by a task that is for-
mally described as predicate task specification Ψ : R → {0, 1}. Given a
task environment 〈Env, Ψ〉 we want to build agents that provide characteristic
behavior defined as:

RΨ(Ag, Env) = {r|r ∈ R(Ag, Env) ∧ Ψ(r)}

Probability of an agent accomplishing successfully the task Ψ is defined as:

P (Ψ|Ag, Env) =
∑

r=RΨ(Ag,Env)

P (r|Ag, Env).

Success in task completion can be either pessimistic ∀r ∈ R(Ag, Env) : Ψ(r)
or optimistic ∃r ∈ R(Ag, Env) : Ψ(r). While the pessimistic definition de-
fines the maintenance task, the optimistic definition defines the achievement
task.

1.2 Agent Architectures

1.2.1 Reactive Agents

Reactive agents represent the simplest possible form of agency. The key idea
of the reactive architecture is the computational implementation of reactive

intelligence. In reactive intelligence the rational decision making is closely
linked to the environment. Intelligent behavior of reactive agents emerges
from the interaction of various simpler (usually rule-based) behaviors. Phi-
losophy of reactive agents rejects the classical AI approach of implementing
decision making by means of symbolic knowledge representation and infer-
ence.
This is why the reactive agents contain no symbolic knowledge representation
(ie: no state, no representation of the environment, no representation of
the other agents, ...). Their behavior is defined by a set (may be large) of
perception-action rules.
The best known reference architecture for the reactive agents is the sub-

sumption architecture, introduced by Brooks [38]. Brooks introduced
the concept of task accomplishing behavior – a function (implemented by
a stateless rule) that maps a percept into an action. The behaviors are
structured into subsumption hierarchy according to the different priority of
the respective rules.
An alternative approach – situated automata – has been suggested by [19].
In this paradigm, a behavior of an agent is specified in a declarative language
(rather more expressive than rules), and this specification is compiled down

6

into a rule-based agent, which satisfies the declarative specification. This
agent can operate in a provable time bound. The important part of reasoning
is done off line, at the compile time, rather than online at run time. The
limitations of the approach are given by the fact the compilation process is
equivalent to an NP-complete problem. Maes suggested the agent network

architecture where an agent is a set of competence modules that loosely
resemble the Brooks (hence reactive) behaviors. Each module is specified by
preconditions, postconditions and an activation level (that gives relevance of
the respective rule).

1.2.2 Deliberative Agents

The deliberative agents are such agents that (i) contain an explicitly rep-
resented symbolic model of the world, the problem, their knowledge, their
history and (ii) make decisions (e.g. about what actions to perform) by
means of symbolic reasoning.
When design a deliberative agent we must tackle:

• transduction problem: that of translating the real world into an ac-
curate, adequate symbolic description, in time for that description to be
useful (e.g. vision, speech understanding, learning),

• representation problem: that of how to symbolically represent infor-
mation about complex real-world entities and processes and

• reasoning problem: how to get agents to reason with this informa-
tion in time for the results to be useful (e.g. knowledge representation,
automated reasoning, automatic planning).

The reasoning process of the deliberative agents can be implemented by the-
oretically reasoning (e.g. deductive agents) or by practically reasoning (e.g.
BDI agents).

Deductive Agents. The deductive agents use the logical deduction and
theorem proving as a reasoning model in order to manipulate the symbolic
representation encoded in the form of logical formulae1.
The deductive reasoning can be designed and used in two possible ways: (i)
either there is a constantly running reasoning loop that is trying to prove
that there is an action that shall, or at least is allowed to be carried out, or

1Logic can be used in agency twofold: (i) for implementing agents’ reasoning mecha-
nism and (ii) for agents’ behavior, decision making, social behavior specification

7

(ii) the mechanism tries to prove what is the best reaction to a new piece of
information sensed from the environment.
The deductive reasoning can be designed used twofold: (i) either there is a
constantly running reasoning loop that is try to prove that there is an action
that shall, or at least is allowed to be carried out – given agent’ s knowledge
∆, and its goal G we shall instantiate a variable α when proving ∆,G ⊢ ∃α

shall-be-done(α) ∨ may-be-done(α) ⇒ do(α), or (ii) the mechanism tries
to prove what is the best reaction to a new piece of information P sensed
from the environment ∆,G ⊢ ∃α react(P , α)

The concept of deductive reasoning provides a very expressive mechanism for
designing a wide range of complex behavioral patterns. However, proving an
appropriateness or plausibility of an action to be carried out may take longer
that the calculative rationality (as defined in [48]) assumption requires.

Practical Reasoning (BDI) Agents. Unlike deductive reasoning that is
a computational activity oriented towards a true facts, practical reasoning is
a decision process oriented towards an action (a process of figuring out what
to do).
Practical reasoning consists of two activities: (i) deliberation, deciding
which state we want to achieve and (ii) means-ends reasoning, deciding
how to achieve this state.
Based on theory of practical reasoning Rao and Georgeff’ [33] formulated a
Belief-Desire-Intention (BDI) model of agency as a framework for reasoning
about formal abstract models of agents’ mental states. Besides implementing
deliberation and means-end reasoning as the key reasoning processes, the BDI
agent organizes its knowledge into the following knowledge structures:

• beliefs, which constitute agent’s knowledge of the state of the environ-
ment, agent’s internal state, knowledge about the other agents,

• desires, which determine agent’s long-term motivation, what is the
agent trying to bring about, maintain, achieve, etc., and

• intentions, which capture agent’s real-time decisions about how to act
in a particular situation in order to fulfill the given desires.

The intentions link the deliberation process and the means-end reasoning
process. Unlike a desire, an intention may be seen as agents’ immediate
commitment to achieve a specific state of affairs that drives the means-end
reasoning process to identify the right action (or a series of action) that result
in the given state of affairs.

8

1.3 Research Challenges and Applications of Agent
Based Computing

Currently the research community of autonomous agents and multi-agent
systems is addressing a wide range of complex research challenges aiming at
providing the following capabilities:

• Coordination - list of agent techniques (based mainly on dedicated co-
ordination protocols and various collaboration enforcement mechanisms)
that facilitates coordinated behavior between autonomous, while collab-
orative agents. Coordination usually supports conflict resolution and
collision avoidance, resource sharing, plan merging, and various collec-
tive kinds of behavior.

• Negotiation - list of various negotiation and auctioning techniques that
facilitate an agreement about a joint decision among several self-interested
actors or agents. Here we emphasize mainly negotiation protocols and
mechanisms how individual actors shall act and what strategies shall
they impose to optimize their individual utility.

• Simulation - techniques that allow inspection of collective behavior of the
interactive actors, provided that the models of the individual agents are
known. Here we count on the versatile simulation frameworks that allow
long-run complex simulation and various "what-if" analyses of different
problems. If distributed hardware system is modeled, agent-based simu-
lation enables a close linkage between simulation and the real hardware
machinery.

• Interoperability - set of techniques for achieving high level interoperabil-
ity among software components developed by different designers, espe-
cially in the situation where the source code and complete models of be-
havior are not shared. Interoperability is studied on the level of physical
connections via interaction protocols but also semantics of communica-
tion.

• Adjustable Autonomy and Policies - set of techniques and methods for
specifying and dynamic adjustment of decision making autonomy of the
individual actors in a multi-agent system. Various formal frameworks for
specifying policies have been proposed and numerous policy management
systems have been designed by the agent community.

• Organization - techniques supporting agents in ability to organize au-
tonomously in permanent or temporal interaction and collaboration struc-

9

tures (virtual organizations), assign roles, establish and follow norms, or
comply with electronic institutions.

• Multi-agent Learning - in the multi-agent community there are various
methods allowing an agent to form hypothesis about available agents.
These methods work mainly with the logs of communication or past be-
havior of agents. Agent community also provides techniques for collabo-
rative (distributed) learning, where agents may share learnt hypothesis or
observed data. A typical application domain is distributed diagnostics.

• Multi-agent Planning - specific methods of collaboration and sharing
information while planning operation among autonomous collaborating
agents. Agent community provides methods for knowledge sharing, ne-
gotiation and collaboration during the 5 phases of distributed planning
(Durfee, 1999): task decomposition, resource allocation, conflict resolu-
tion, individual planning, and plan merging. These methods are particu-
larly suitable for the situations when the knowledge needed for planning
is not available centrally.

• Knowledge Sharing - techniques assisting in sharing knowledge and un-
derstanding different types of knowledge among collaborative parties as
well as methods allowing partial knowledge sharing in semi-trusted agent
communities (Pechouček, et. al. 2002) (closely linked with distributed
learning and distributed planning).

• Trust and Reputation - methods allowing each agent to build a trust
model and share reputation information about agents. Trust and repu-
tation is used in non-collaborative scenario where agents may perform
non-trusted and deceptive behavior.

When analyzing the opportunities for agent technology deployment it is fair
to distinguish between two slightly different sets of techniques: (i) techniques
supporting interaction and collaboration of distributed multiple agents and
(ii) techniques supporting agents’ autonomy. Even though the combination
of both aspects of agency is a desirable property of an agent-based system,
in our experience industrial deployment emphasize either the distributed and
collective aspects or the autonomy-oriented aspects of agency. Let us discuss
the properties of the problems and the application requirements with respect
to what the agent techniques can provide.
Distributed and collective aspects of agency are considered to perform well
in application domains with the following specific properties (properties P1
- P6):

10

• Decentralized scenarios: Particularly suitable are the domains where
the data and knowledge required for computation are not or cannot be
available centrally or the process physical system control needs to be
distributed. This can be the case in several situations (properties P1 -
P3):

– Geographical distribution of knowledge and control (e.g., logistics,
collaborative exploration, mobile and collective robotics, pervasive
systems) or the environments with partial or temporary communi-
cation inaccessibility (where self-organization, local interaction and
intelligent synchronization is needed in order to cope with communi-
cation inaccessibility) - property P1.

– Competitive domains, with the restrictions on the information shar-
ing (e.g., e-commerce applications, supply-chain management, and
e-business) - property P2.

– Domains with the requirements for time-critical response and high ro-

bustness in distributed environment (e.g., time-critical (soft- and/or
hard-realtime) manufacturing or industrial systems control, with re-
planning, or fast local reconfiguration) - property P3.

• Simulation and modeling scenarios: Using agents for simulation
purposes has been very common, while the right justification was often
missing. Agents shall be deployed in simulation exercises where we re-
quire, e.g., an easy migration from the simulation to deployment in real
environment - property P4.

• Open systems scenarios: In scenarios requiring integration and in-
teroperability among software systems that are not known a priori and
whose source code may not be available - here the use of agent tech-
nologies, especially agent communication languages and interoperability
standards is advisable - property P5.

• Complex systems scenarios: In scenarios requiring modeling, con-
trolling or engineering of complex systems. Decomposition of the de-
cision making into separate agents’ reasoning and solving problems by
means of negotiation represents a novel software development paradigm
(Giorgini, et.al. 2003). Complex system modeling is often understood
as closely related to solving complex problems. Potentials for decreasing
computational requirements for complex problem solving by means of
paralleling the computational process within multiple agents is limited,
but possible - property P6.

11

Autonomy oriented aspects of agency is appropriate in application domains
with high requirements for systems with decision making autonomy, when
the user delegates the substantial amount of decision making authority to
the system and when the system is expected to cope independently with
unexpected situations (also in the situation with long term communication
inaccessibility and interaction isolation of the autonomous entity) - property
P7.
The properties P1 and P7 are somewhat linked. In the situations, where the
communication infrastructure, a critical component required for collective
decision making, is disrupted, some of the agents need to perform higher
level of decision making autonomy.

12

Chapter 2

Introduction to Programming Autonomous
Agents and Multi-agent Systems

Motivation

Intelligent agents are assumed to be autonomous, proactive, reactive, as well
as socially able (cf. [48]). In this tutorial, we are concerned with the problem
of programming cognitive agents (also knowledge-intensive agents [18]). I.e.,
those employing cognitive processes as the basis for their decision making and
actions. In particular, we will focus on systems constructing and maintaining
a mental state [42] which is used as the basis for the action selection. Being
able to process symbolic information is a necessary prerequisite for inter-
agent information exchange. Reasoning and communication about agent’s
mental attitudes, such as beliefs, goals, intentions, commitments, obligations,
etc. facilitates coordination among agents. In consequence, programming
frameworks for such a agents must support programming with mental atti-

tudes.

Foundations: BDI Architecture

Behaviour of embodied agents can be described by an agent program, a map-
ping of agent’s percepts to actions ([41]). The straightforward encoding in
terms of a table associating actions with perceptions leads to reactive agent
programs. While useful for relatively small and isolated systems, when deal-
ing with rich environments such programs become brittle, if not impossible
to construct. This programming style tackles the issue of agent reactivity,
however does not facilitate implementation of proactive and socially able
systems.
On the other hand, approaches based on classical planning support more
compact agent programs, however blind plan execution suffers in highly dy-
namic and uncertain environments. High rate of environment changes leads
to frequent invalidation of agent’s plans. In turn, in applications with costly
re-planning, such an approach leads to ineffective use of agents resources and
potentially completely disables agent’s behaviour.

To tackle these problems, the research led to development of hybrid archi-
tectures. As one of the most useful and in the recent years widely applied,
emerged the Belief-Desire-Intention (BDI) abstract architecture by Rao and
Georgeff [34, 35]. Firstly, it prescribes decomposition of agent’s mental atti-
tudes into three distinct categories: beliefs, desires and intentions of an agent.
Secondly, it comes with an abstract interpreter and an associated logic-based
formalism (CTL*) facilitating reasoning about properties of evolutions of
such systems. It prescribes a reasoning model (I-System) for BDI-style ra-
tional agents in terms of the following eight axioms: Informally, an agent
should adopt only goals it believes to be an option (AI1). It should adopt
intentions only in order to achieve its goals (AI2). If the agent has an in-
tention to perform a certain action, it will eventually also perform it (AI3).
It should be aware of the fact that it committed itself to certain goals and
intentions (AI4, AI5). If the agent intends to achieve something, it also has
to have a goal to intend it (AI6). It should be aware of its actions (AI7) and
finally the agent should never hold its intentions forever (AI8).

Agent-oriented Programming Languages

The abstract BDI architecture led to agent programming techniques em-
ploying reactive planning techniques while not necessarily performing proper
planning. The resulting programs take a form of a set of partial plans enacted
according to the current state of agent’s mental state.
Attempts to develop operationalization of the proposed abstract BDI ar-
chitecture [34, 35] married with the notion of agent oriented programming
(AOP) [42] resulted in rise of agent-oriented programming languages. His-
torically, the most important include logic-based approaches AGENT-0 [42],
PLACA [44], AgentSpeak(L)/Jason [36, 5], Golog [21], as well as more re-
cent proposals 3APL [11], GOAL [13], MetateM [12] and more pragmatically
oriented proposals such as e.g., JACK [47], or Jadex [29].
In the tutorial, we introduce AgentSpeak(L)/Jason and Jadex in a more
detail. While the former belongs to the group of approaches based on a
formal logic-based theory, the latter is a more pragmatic attempt to bring the
AOP techniques closer to mainstream software engineering. Both languages
feature a functional language interpreter implementation together with a set
of practical tools facilitating systems development (e.g., IDE, debugger, code
editor, etc.).

14

Chapter 3

Agent Platforms

Multiagent system is defined as a set of loosely coupled autonomous software
agents which interact together to achieve a common goal. To simplify and
speed-up a development process and ensure safe and efficient execution of
individual agents software systems called multiagent platforms can be uti-
lized. We can distinguish these platforms according to the level of services
they provide to the user varying from full platforms, which are self-contained
systems that provide some kind of runtime libraries required for agent appli-
cations and application programming interface, to toolkits for creating agent
applications which provide engineering support making use of model-driven
approaches, graphical editors and other enhancements for designing indi-
vidual agents. These tools cover graphical UML-like tools or specific agent
implementation languages. These models are later transformed into some im-
plementation in a programming language. The resulting applications, unlike
in the case of full platforms, usually do not need a dedicated runtime envi-
ronment or specific libraries. In the following the term multiagent platform
will refer to full platforms.
From the point of view of software development multiagent platforms repre-
sent a middleware which provides developers and/or administrators with an
agent execution environment which takes care about the agent life-cycle man-
agement, set of basic services which ensure interoperability, communication,
security or service discovery and set of tools which help to monitor status
of the system or develop advanced reasoning structures within an agent and
interaction schemes among individual agents. From the point of view of in-
teraction among agents we distinguish open and closed multiagent systems.
Open systems allow interaction among various types of agents developed by
different vendors, which may represent numerous organizations or compa-
nies and may act as self-interested. Open systems are e.g. inter-enterprise
information systems or supplier-customer trading systems. These systems
bring additional requirements on security and interoperability. On the other
hand agents forming a closed system usually interact only with a predefined
set of other agents which are known to the developer in advance. Example
of closed system is an intra-enterprise information system or simulation sys-
tems. Simulation systems usually bring more requirements on performance

of underlying multiagent platform, which may in some cases result in opti-
mizations that lead to lower interoperability. In closed systems agents will
not try to intentionally harm the rest of the system (unless this feature is
studied) and advanced approaches to malicious behavior detection are thus
not required.

3.1 FIPA Specifications

Interoperability in open systems is not easy to achieve, as agents can be devel-
oped in various programming languages, utilize different agent platforms or
executed under several operating systems. In order to create some common
specifications that will ensure the interoperability FIPA organization was
founded. FIPA specifications represent a collection of standards which are
intended to promote the interoperation of heterogeneous agents and services
that they can represent. The complete set of specifications can be viewed in
terms of different categories: agent communication, agent transport, agent
management, abstract architecture and applications. Core category which is
most significant for agent interoperability is agent communication. In order
to be FIPA compliant, concrete architectural specification must have certain
properties. The architecture must include mechanisms for agent registration,
agent discovery and inter-agent message transfer. FIPA Abstract Architec-
ture specification defines minimum required elements of agent platform ar-
chitecture, which are message transport, agent directory, service directory
and agent communication language. Agents communicate by exchanging
messages which represent speech acts, and which are encoded in an agent
communication language. A message is an individual unit of communication
between two or more agents. Message includes an indication of the type of
communicative act (e.g. inform, query), the agent names of the sender and
receiver agents and the content of the message itself. Content of the message
can be specified by ontology.
A message transport service supports sending and receiving of messages be-
tween agents. Message transport service is responsible for physical delivery
of messages to receivers, it manages the socket communication.
The basic role of agent and service directory services is to provide a location
where agents/services register their descriptions as directory entries. Other
agents/services can search these entries to find partners with which they
wish to interact. These services can work as an intra-platform or even expose
their records to other platforms to allow interaction among all agents in open
systems.

16

Figure 3.1: Agent Management Reference Model

3.2 FIPA Management Reference Model

FIPA Management Reference Model (as shown in Figure 3.1) provides the
normative framework within which FIPA-compliant agents exist and operate.
It establishes the logical reference model for creation, registration, location,
communication, migration and retirement of agents. Agent in this context is
defined as a computational process that implements the autonomous, com-
municating functionality of an application. An agent must support at least
one notion of identity. This notion of identity labels an agent, so that it may
be distinguished unambiguously within the agent universe. An agent may
be registered at a number of message transport addresses at which it can be
contacted.
An Agent Management System (AMS) is a mandatory component of the
agent platform. Only one AMS will exist in a single platform. The AMS
maintains a directory of unique agent identifiers and transport addresses
for agents registered with the agent platform. The AMS offers white pages
services to other agents.
An Agent Platform (AP) provides the physical infrastructure in which agents
can be deployed. It can be viewed as a kernel responsible for thread, mem-
ory and socket management. The AP consists of the machine(s), operating
system, agent support software, FIPA agent management components and
agents. The internal design of an AP is an issue for agent system developers.
A Directory Facilitator (DF) is an optional component of the AP. It provides
yellow pages services to the agents. DF represents an implementation of
agent/service directory services.

17

3.3 Additional Platform Services

Some multiagent platforms support agent mobility. Mobile agents are char-
acterized by code mobility, i.e. mobile robots are not considered as mobile
agents. Agent mobility can be used during the simulations to improve the
load balancing or in cases when agents operate in environment with unstable
conditions (i.e. unreliable communication links, limited computational re-
sources). In open systems agent mobility brings additional requirements on
system security. As agents with unknown features and intentions can be de-
ployed on agent platform it is necessary to ensure their thread-safe operation,
which will hold the rest of the system harmless against their failure.
Another important feature of multiagent platforms, especially in case of open
systems is security. This term represents various aspects of fail-safe opera-
tion. From the point of view of agent platform it is necessary to ensure a
thread-safe agent execution model, especially in case of mobile agents, as
mentioned above. In open systems agents may try to build a model of trust
of other agents they interact with to create a set of trustful collaborators.
Another important aspect is communication security, which either prevents
third-party software from observing message content by its encryption or al-
lows agents to electronically sign messages to prove the origin of the content.
Dynamic nature of agent systems brings several problems with distribution
of security certificates and private keys.
In total there are at about 150 former and current multiagent platforms and
toolkits. Numerous of them are provided under an open license (open source,
free license), some are commercial (sale of licenses, authors provide support),
rest was developed for use in particular projects and is not available for
public use. Most widely used multiagent platforms are Jade [17], JACK [16],
AGLOBE [1] or Cougaar [9].

18

Chapter 4

Agent-based Modeling and Simulation

Agent-based modeling and simulation (ABMS) [24, 4] is a new approach
for obtaining insight and foresight regarding the operation of complicated
systems. Introduced in mid 1990s and gaining popularity in 2000s, ABMS
presents a very different perspective to modeling and simulation. Whereas
the traditional approaches (i.e. dynamical systems, system dynamics and
discrete event-based simulation) describe a target system top-down in terms
of macroscopic, aggregate variables and global relationships and update rules
affecting them, ABMS adopts a microscopic, bottom-up view and describes
target system from the perspective of its constituent units.

The difference can be illustrated e.g. on traffic modeling. Traditional ap-
proaches would model the problem in terms of a global graph of queues with
add and remove rules; individual cars would be modeled as (homogeneous)
items moving between the queues. In contrast, the agent-based approach
would model the cars as proactive agents with a locally defined behavior
which would depend e.g. on the properties of the road, the position of other
cars and characteristics of the driver and other factors. An in-depth dis-
cussion of the differences between the different modeling paradigms can be
found in [7].

4.1 Simulation Structure

In general, each agent-based simulation consists of two principal components:

• Agents – Proactive entities inhabiting the simulation environment (see
below). An agent is typically equipped with the ability to (1) interact
with the environment through sensors and actions, (2) reason about
information and action (i.e. decide what to do based on what the agent
knows and what its goals are), and (3) communicate with other agents
via sensing messages.

• Environment – Agents operate within a defined environment; the topol-
ogy and state of the environment imposes constraints on what agents can
sense (e.g. cannot see through a wall), which actions they can carry out

(e.g. cannot walk through a wall) or with whom an agent can communi-
cate (e.g. cannot send messages when out of signal coverage).

When communication is complex and critical for the simulation, a dedicated
model of the communication channel can be created. This is e.g. the case
of ad-hoc wireless network used to coordinate team action in a complex
environment (e.g. cities).

4.2 Simulation Execution Cycle

A typical execution cycle of an agent-based simulation consists of the follow-
ing steps:

• Observe – Each agent updates its sensory information to reflect the
current state of the surrounding environment.

• Decide – Considering the agent’s internal state, state of the environment
as mediated by agent’s sensors and messages received from other agents,
the agent decides on actions to take.

• Act – The agent performs the chosen actions; actions can be internal,
external (interacting with the environment and modifying its state) or
communication with other agents through sending messages

• Environment Update – Changes in the state of the environment
caused by other factors than agent activity are applied (e.g. weather,
disease spread)

The above simulation cycle is constantly repeated. Depending on the type
of the simulation, individual steps can be synchronized between all agents
(synchronous simulation) or can be carried out independently, potentially
with different length for each agents (asynchronous simulation).

4.3 Advantages

The bottom-up perspective lends the ABMS a number of important advan-
tages over traditional approaches:

• Captures emergent-phenomena – Emergent phenomena (such as traffic
jams, human crowds etc.) result from the interactions of individual en-
tities. Emergent phenomena cannot be reduced to the system’s parts –
the whole is more than the sum of its parts because of the interactions
between the parts – and are therefore beyond the reach of top-down
methods.

20

• Natural, easy-to-maintain models – ABMS is most natural for describing
and simulating a system composed of “behavioral” entities – be it a traffic
jam, the stock market, voters, or how an organization works. ABMS
makes the model seem closer to reality and thus easier to create, maintain
and extend.

• Flexibility, scalability and heterogeneity – ABMS can be changed in a
variety of useful ways: agents can be easily added, their behavior (rea-
soning algorithm, rules of interaction etc.) and complexity (degree of
rationality, ability to learn etc.) modified. ABMS also make it easy to
incorporate heterogeneous agents with varied per-type and per-instance
behavior.

The above advantages come at the expense of high computational cost of a
typical ABMS. Research on how agent-based simulations can be parallelized
and distributed is therefore a very important topic.

4.4 Platforms and Tools

In contrast to the traditional modeling approaches where a number of mature,
industry-strength platform exist, the technology for ABMS is still (rapidly)
evolving. Two most wide-spread generic ABMS platforms are NetLogo1 and
Repast Simphony2. NetLogo provides an easy-to-use, intuitive design- and
runtime framework targeted at non-programmers. Repast, on the other hand,
is Java-based and requires good Java programming skills. Recently, ABMS
concepts have introduced to some commercial M&S frameworks such as Any-

Time3. A recent survey of ABMS platforms can be found in [26].

1http://ccl.northwestern.edu/netlogo/
2http://repast.sourceforge.net/
3http://www.xjtek.com/

21

http://ccl.northwestern.edu/netlogo/
http://www.xjtek.com/

Chapter 5

Agent Applications in Traffic and
Transportation

The multi–agent systems are widely used for planning, control and simulation
in various traffic domains. The domain of air traffic management is inter-
esting because of the current and predicted number of flights and way the
air traffic is managed nowdays. The air traffic is today controled purely by
humans – air traffic controlers and the only criterion of optimality is safety.
There are no optimizations of flight trajectory length nor fuel consumption.
It is clear that the system of air traffic management needs to be changed us-
ing the modern computational techniques because of the predicted increase
of flights. To design the system properly, it is necessary to simulate the
currently used system, identify the bottlenecks and avoid them in the new
system. Within the air traffic management research community, there were
developed several approaches and software prototypes used for the simulation
of the air traffic management (mostly above US):

• NASPAC 2.0 (metronaviation + NASA + CSSIINC + FAA) – Devel-
oped since 1992, using the queue modeling of the air traffic and event
based simulation. The simulation works in several phases using several
tools – the tracks are computed first and then other tools are applied on
these tracks to compute the data needed for metrics computations

• FACET (NASA Ames) – Another system developed by NASA using the
queue based modeling techniques. The system studies air traffic in detail
– it contains for example studies of air pollution

• ACES (NASA Ames + I-a-I + NASA Langley) – Agent–based simula-
tion, developed over 10 years. Contains basic collision avoidance algo-
rithms.

5.1 Simulating Air Traffic Management in AgentFly

AgentFly is a software prototype of multi-agent technology deployment in
aerial vehicles air traffic control supporting the free flight concept build on
top of the A-globe multi-agent platform. All aerial assets in AgentFly are

modeled as asset containers hosting multiple intelligent software agents. Each
container is responsible for its own flight operation. The operation of each
vehicle is specified by an unlimited number of time-specific, geographical
waypoints. The operation is tentatively planned before take-off without con-
sideration of possible collisions with other flying objects. During the flight
performance, the software agents hosted by the asset containers detect pos-
sible collisions and engage in peer-to-peer negotiation aimed at sophisticated
re-planning in order to avoid the collisions. The aim of this agent deployment
is to demonstrate readiness of multi-agent technology for distributed, flexi-
ble, and collision-free coordination among heterogeneous, autonomous aerial
assets (manned as well as unmanned) with a potential to:

• fly a higher number of aircrafts

• decrease requirements for off-board control operators

• allow a flexible combination of cooperative and non-cooperative collision
avoidance

The AgentFly prototype provides:

• distributed model of flight simulation and control

• time-constrained way-point flight planning algorithm avoiding specified
no-flight zones,

• flexible collision avoidance architecture, dynamic adjustment to changes
in the flight environment

• connectors to external data (Landsat images, airports monitors, no-flight
zones, cities),

• 2D/3D visualization including a web-client access component, and

• multiple operator – facilitating real-time control of selected assets

5.2 Collision Avoidance Algorithms in AgentFly

AgentFly provides four distinct collision avoidance (CA) algorithms linked
by a flexible mechanism managing the autonomy of individual assets and
selecting the best collision avoidance strategy in real time:

• Rule-based CA algorithm is a domain dependent algorithm based
on the Visual Flight Rules defined by FAA2. Upon the collision threat
detection, the collision type is determined on the basis of the angle be-
tween the direction vectors of the concerned aircrafts. Each collision

23

type has a predefined fixed maneuver which is then applied in the re-
planning process. Visual flight rule-based changes to flight plans are
done by both assets independently because the second asset detects the
possible collision with the first asset from its point of view.

• Utility-based CA algorithm deploys multi-agent negotiation theo-
ries (namely Monotonic Concession Protocol with the Zeuthen Strategy)
aimed at finding the optimal CA maneuver. The software agents on each
asset generate a set of viable CA maneuvers and compute costs associ-
ated with each maneuver (based on e.g. the total length of the flight
plan, time deviations for mission way-points, altitude changes, curva-
ture, flight priority, fuel status, possible damage or type of load). The
agents negotiate such a combination of maneuvers that minimizes their
joint cost associated with avoiding the collision.

• Multi-party CA algorithm extends the above presented CA algo-
rithm by allowing several assets to negotiate about collective CA avoid-
ance maneuver. This algorithm minimizes the effects of CA maneuvers
causing conflicts in future trajectories with other flying assets. While re-
quiring more computational resources, this strategy has shown to provide
more efficient free-flight collision free trajectories.

• Non-cooperative CA algorithm supports collision avoidance in the
case when communication between aircrafts is not possible. Such a situa-
tion can arise e.g. when on-board communication devices are temporarily
unavailable or when an asset avoids a hostile flying object. This algo-
rithm is based on modeling/predicting the future airspace occupancy
of the non-cooperative object and representing it in terms of dynamic
no-flight zones. Based on this information, the algorithm performs con-
tinuous re-planning.

24

Chapter 6

Agent Applications in Network Security
Monitoring

The session will introduce the concept of security monitoring in general and
define the problems of system monitoring and autonomous analysis in an un-
certain, adversarial environment. Then, using this general theoretical frame-
work, we will use the example of network monitoring and intrusion detection
to illustrate the theoretical concepts on a real-world example.

6.1 Motivation

The problem of security monitoring is well defined in many areas of both
physical [2] and electronic security [28]. Monitoring is essential and indis-
pensable component of any security infrastructure, as it allows to manage
the system, discover possible failures of prevnetive/perimeter devices and
address them before the attack causes major harm or disruption. On the
other hand, security monitoring is an attractive target for any sophisticated
attacker, as its compromise is necessary for successful execution of attacks
against highly secure, multi-level defences. With the increasing role of dis-
tributed and autonomous computational elements in the security infrastruc-
ture (ranging from intelligent motion sensors and shape identifying cameras
to sophisticated intrusion detection systems in computer security), a new
attack frontier emerges against the intelligent algorithms embedded in the
monitoring infrastructure.
The use of techniques from the field of agent-based computing [43], game
theory [27] and autonomic computing [37] can make the algorithms more
robust w.r.t. intentional manipulation of their models [10, 3]. Our talk
will cover the basic attack techniques and outline possible defence strategies
against them, before presenting more specific deployment scenarios from the
network security field.

6.2 Attacks

The attacks can be broadly categorized into several classes, in increasing level
of sophistication:

• Passive attacks on sensors - prevent the sensor from noticing the object.
Typical examples are insertion/evasion [30] in network security, or plas-
tic foils that prevent the heat from the attacker from reaching the IR
movement sensor.

• Active attacks on sensors - actively modify sensor or environmental char-
acteristics to render it ineffective. Examples include all kinds of electronic
attacks, such as jamming [2].

• Passive attacks on pattern matching/feature extraction - attack the abil-
ity of the detection system to extract meaningful information from the
data captured by the sensor. Examples include polymorphic malware [28]
in network security, shape disrupting camouflage in military applications
and many others.

• Active attacks on pattern matching/feature extraction: These attacks
try to use the knowledge of the feature extraction algorithm to actively
modify its characteristics. Examples are concurrent attacks in computer
security, where a large attack hides the existence of a more dangerous
small attack, or the attacks involving traffic shaping.

• Passive attacks on detection model - are designed to avoid attacker’s
detection by inferring the internal state of the detection algorithm and
then adapting the attack behavior so that it is still effective as an attack,
but difficult to detect by the algorithm. The examples include learning,
adaptive malware, that can adapt to detection algorithm capability [20].

• Active attacks on detection algorithm model - are designed to modify the
internal state of the detection algorithm, so that the attacker can then
exploit this state. A nice example of this technique is adversarial traffic
shaping in network security [40].

• Denial of service/capacity attacks - are designed to overwhelm the oper-
ator using the system with an unmanageable number of attacks. Again,
these techniques are frequently used in electronic attacks [30], as well as
in the physical attacks on alarm systems [2].

6.3 Defence Strategies

Available defence strategies to the above cases are typically inspired by join-
ing the techniques from the field of game theory, autonomic systems and
multi-agent systems in order to deliver a system that is both difficult to

26

model and understand for the opponent and still delivers consistent detec-
tion results in a wide range of scenarios. Adaptivity in such cases needs to be
driven strategically, take into account possible manipulation by the opponent
and play rich randomized strategies that are hard to predict and exploit.

27

Chapter 7

Agent Applications in Production Planning

An agent based production planning and scheduling system is a new and
very efficient approach, based on methods of artificial intelligence. A system
is implemented as a community of agents that communicate and cooperate
one with each other and together create a plan.
Contrary to a standard centralized planning system, multi agent system sup-
ports an easy integration of an existing software and hardware. Each exist-
ing system that should be involved in the planning process is "agentified"
- equipped with an interface that allows them to behave as an agent. The
multi agent technology is scalable to a wide area of planning problems from
small factories to large enterprises with hundreds of connected units. An-
other advantage is an acceleration of the planning process that is caused by
parallel computations, by employment of the methods of the distributed arti-
ficial intelligence and by an effective re-planning. When some part of the plan
cannot be executed, only a minimal part of the plan have to be changed and
only necessary agents are involved in the re-planning and re-configuration.
The multi-agent system is not suitable for planning and scheduling only.
When it is extended by the production unit models and real-time feedback
it is able to provide also efficient simulation. When agentification of the
real equipment is made, the same interface is used for connecting simulation
model to emulate the behaviour of the equipment for various tests end ex-
periments. Agent based simulation provides the estimation of performance
and workflow progression for various planning/scheduling strategies. Agent
based modelling and simulation is suitable mainly for dynamic self-organizing
production processes. The simulation based on defined roles and data base
refined using real-time feedback provides valuable prediction of the produc-
tion system response to various control action, environment changes or faults.

7.1 Agent-based Planning for Industry

Agent technologies are well suited in the domain of simulation and planning
of the manufacturing processes. Agent technologies provide high flexibility
and modular architecture. The Multi-agent system is suitable for i) middle
and high level planning of the manufacturing processes on short or long-term

period with possible incorporating external suppliers, ii) low-level real-time
control and planning with production feedback, iii) configuration and sim-
ulation of the manufacturing process to find the most expedient structure
and plan. The concept of agentification allows operating with existing soft-
ware/hardware solutions as well as human resources and robots. The concept
of agent may be applied on different levels of the production process [23]:

• On the lowest level, agents maintain inseparable functional units within
one shop-floor (in case of enterprise, the real-time holonic control is linked
with the physical devices;

• On the level of one plant structure member intra organization manage-
ment (shop-floor inside an enterprise - also called intra-enterprise level)
the agent-based planning and scheduling applies;

• On the level of the inter-enterprise cooperation (also called extra-enterprise
level) agents provide integration into collaborative networks.

Any complex physical system consists of a number of partially independent
components that are of various types and that are working parallel. There-
fore, the simulation and modeling of such multi-component systems (e.g.
workflow) can naturally utilize distributed technologies like multi-agent sys-
tems [8].

7.2 Industrial Agent-based Applications

The potential and discussion of the MAS implementations in the manufac-
turing domain can be found in [31]. Examples of utilization of Multi-agent
technology in domain of Production Planning and Control (PPC) are sys-
tems ExPlanTech and ExtraPlanT. The ExPlanTech system demonstrates
successful deployment of multi-agent technology in the domain of shop-floor
production planning in automotive industry [32]. The suppliers and external
partners integration has been extended in ExtraPlanT system [14]. In these
systems, the agents represent the production workshops and cooperate to
prepare the production plan on the intra-enterprise (ExPlanTech) and extra-
enterprise (ExtraPlanT) levels. The real online production feedback helps to
adapt the plan to keep the plan constrains consistent and react fast to the
unexpected events. The example of agent-based control system is MAST [22]
that provides the support for integrating RFID products identification [46].
In the MAST, the agents represent machines and products and negotiate to
dynamically optimize whole production process.

29

Figure 7.1: Examples of industrial agent-based applications.

Another application area of MAS is modelling and simulation of production
processes. The SimPlanT [45] is the agent-based system that utilizes au-
tonomous models of production entities and event-based simulation for ana-
lyzing production flows and quality of plan variants. The Hyres system [39]
uses agent-based models to diagnose the complex production process (based
on alarms observed in the system), analyses the potential impact of the ob-
served problems, and provides the root cause analyses. The agent-based
Decision Support System for Virtual Organization simulations can be found
in [15]. The examples of the industrial agent-based applications are depicted
on Figure 7.1

30

Bibliography

[1] AGLOBE. AGlobe Agent Platform.

http://agents.felk.cvut.cz/aglobe, 2010.

[2] Anderson, R. J. Security Engineering: A Guide to Building Depend-

able Distributed Systems. Wiley, January 2001.

[3] Barreno, M., Nelson, B., Sears, R., Joseph, A. D., Tygar,
J. D. Can machine learning be secure?. In ASIACCS ’06: Proceedings
of the 2006 ACM Symposium on Information, computer and communi-

cations security, s. 16–25, New York, NY, USA, 2006. ACM.

[4] Bonabeau, E. Agent-based modeling: Methods and techniques for
simulating human systems. Proceedings of the National Academy of
Sciences, sv. 99, č. 3, s. 7280–7287, Květen 2002.

[5] Bordini, R. H., Hübner, J. F., Wooldridge, M. Programming
Multi-agent Systems in AgentSpeak Using Jason. Wiley Series in Agent
Technology. Wiley-Blackwell, 2007.

[6] Bordini, R. H., Dastani, M., Dix, J., Seghrouchni, A. E. F.
Multi-Agent Programming Languages, Platforms and Applications.,
vol. 15 of Multiagent Systems, Artificial Societies, and Simulated Or-
ganizations Kluwer Academic Publishers, 2005.

[7] Borshchev, A., Filippov, A. From system dynamics and discrete
event to practical agent based modeling: Reasons, techniques, tools. In
Proceedings of the 22nd International Conference of the System Dynam-
ics Society, s. 25–29, 2004.

[8] Bölöni, L., Boloni, L., Marinescu, D. C., Rice, J. R., Tsom-
panopoulou, P., Vavalis, E. A. Agent Based Networks for Scientific

Simulation and Modeling., 1999.

[9] Cougaar. Cognitive Agent Architecture. http://www.cougaar.org,
2010.

[10] Dalvi, N. N., Domingos, P., Mausam, Sanghai, S. K., Verma,
D. Adversarial classification. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,

Seattle, Washington, USA, August 22-25, 2004, s. 99–108. ACM, 2004.

[11] Dastani, M., van Riemsdijk, M. B., Meyer, J.-J. Programming
Multi-Agent Systems in 3APL., chapter 2, s. 39–68 Volume 15 of Mul-
tiagent Systems, Artificial Societies, and Simulated Organizations [6],
2005.

[12] Fisher, M., Hepple, A. Executing Logical Agent Specifications., chap-
ter 1, s. 3–27 In Bordini et al. [25], 2009.

[13] Hindriks, K. V. Programming Rational Agents in GOAL., chapter 4,
s. 119–157 In Bordini et al. [25], 2009.

[14] Hodík, J., Bečvář, P., Pěchouček, M., Vokřínek, J., Pospíšil,
J. Explantech and extraplant: multi-agent technology for production
planning, simulation and extra-enterprise collaboration. International

Journal of Computer Systems Science and Engineering, sv. 20, č. 5,
s. 357–367, 2005.

[15] Hodík, J., Vokřínek, J., Hoffman, R. Decision support system for
virtual organization management. In Innovative Production Machines

and Systems, Procedings of the Third I*PROMS Virtual International
Conference, 2-13 July, 2007, s. 85–90, Dunbeath, 2008. Whittles Pub-
lishing.

[16] JACK. JACK Agent Platform. http://www.agent-software.com,
2010.

[17] JADE. Java Agent Development Framework. http://jade.tilab.com,
2010.

[18] Jones, R. M., Wray III, R. E. Comparative analysis of frameworks
for knowledge-intensive intelligent agents. AI Magazine, sv. 27, č. 2,
s. 45–56, 2006.

[19] Kaelbling, L. P., Rosenschein, S. J. Designing Autonomous

Agents., chapter Action and planning in embedded agents, s. 35–48 The
MIT Press, Cambridge, MA., 1990.

[20] Kayacik, H. G., Zincir-Heywood, A. N. Mimicry attacks demysti-
fied: What can attackers do to evade detection?. Privacy, Security and

Trust, Annual Conference on, sv. 0, s. 213–223, 2008.

[21] Levesque, H. J., Reiter, R., Lespérance, Y., Lin, F., Scherl,
R. B. Golog: A logic programming language for dynamic domains. J.

Log. Program., sv. 31, č. 1-3, s. 59–83, 1997.

32

[22] Marík, V., Vrba, P., Fletcher, M. Agent-based simulation: Mast
case study. In BASYS, s. 61–72, 2004.

[23] Marík, V., Lazanský, J. Industrial applications of agent technolo-
gies. Control Engineering Practice, sv. 15, č. 11, s. 1364 – 1380, 2007
Special Issue on Manufacturing Plant Control: Challenges and Issues -
INCOM 2004, 11th IFAC INCOM’04 Symposium on Information Con-
trol Problems in Manufacturing.

[24] Miller, J. H., Page, S. E. Complex Adaptive Systems: An Intro-
duction to Computational Models of Social Life (Princeton Studies in

Complexity). Princeton University Press, Březen 2007.

[25] Bordini, R. H., Dastani, M., Dix, J., Fallah-Seghrouchni,
A. E., editors Multi-Agent Programming: Languages, Tools and Ap-

plications. Springer, Berlin, 2009.

[26] Nikolai, C., Madey, G. Tools of the Trade: A Survey of Various
Agent Based Modeling Platforms. Journal of Artificial Societies and
Social Simulation, sv. 12, č. 2, s. 2, 2009.

[27] Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. V. Al-

gorithmic Game Theory. Cambridge University Press, New York, NY,
USA, 2007.

[28] Northcutt, S., Novak, J. Network Intrusion Detection: An An-

alyst’s Handbook. New Riders Publishing, Thousand Oaks, CA, USA,
2002.

[29] Pokahr, A., Braubach, L., Lamersdorf, W. Jadex: A BDI Rea-

soning Engine., chapter 6, s. 149–174 Volume 15 of Multiagent Systems,
Artificial Societies, and Simulated Organizations [6], 2005.

[30] Ptacek, T. H., Newsham, T. N. Insertion, evasion, and denial of ser-
vice: Eluding network intrusion detection. Technical report, Secure Net-
works, Inc., Suite 330, 1201 5th Street S.W, Calgary, Alberta, Canada,
T2R-0Y6, 1998.

[31] Pěchouček, M., Rehák, M., Mařík, V. Expectations and deploy-
ment of agent technology in manufacturing and defence: case studies. In
Pěchouček, M., Steiner, D., Thompson, S. G., editors, AAMAS

Industrial Applications, s. 100–106. ACM, 2005.

[32] Pěchouček, M., Vokřínek, J., Bečvář, P. Explantech: Mul-
tiagent support for manufacturing decision making. IEEE Intelligent

Systems, sv. 20, č. 1, s. 67–74, 2005.

33

[33] Rao, A. S., Georgeff, M. P. BDI-agents: from theory to practice.
In Proceedings of the First Int. Conference on Multiagent Systems, San
Francisco, 1995.

[34] Rao, A. S., Georgeff, M. P. Modeling Rational Agents within a
BDI-Architecture.. In KR, s. 473–484, 1991.

[35] Rao, A. S., Georgeff, M. P. An Abstract Architecture for Rational
Agents.. In KR, s. 439–449, 1992.

[36] Rao, A. S. AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language. In de Velde, W. V., Perram, J. W., editors,
MAAMAW, vol. 1038 of Lecture Notes in Computer Science, s. 42–55.
Springer, 1996.

[37] Rehák, M., Staab, E., Fusenig, V., Pechoucek, M., Grill,
M., Stiborek, J., Bartos, K., Engel, T. Runtime monitoring and
dynamic reconfiguration for intrusion detection systems. In Kirda, E.,
Jha, S., Balzarotti, D., editors, Recent Advances in Intrusion Detec-

tion, 12th International Symposium, RAID 2009, Saint-Malo, France,
September 23-25, 2009. Proceedings, s. 61–80, 2009.

[38] Rodney, A., Brooks, R. A. How to build complete creatures rather
than isolated cognitive architectures. In Vanlehn, K., editor, Architec-
tures for Intelligence, s. 225–240. Lawrence Erlbaum Associates, 1991.

[39] Rollo, M., Novák, P., Kubalík, J., Pěchouček, M. Alarm root
cause detection system. In Camarinha-Matos, L. M., editor, Emerg-
ing Solutions for Future Manufacturing Systems, s. 109–116. New York:
Springer, 2004.

[40] Rubinstein, B. I. P., Nelson, B., Huang, L., Joseph, A. D., hon
Lau, S., Taft, N., Tygar, J. D. Evading anomaly detection through
variance injection attacks on pca. In Lippmann, R., Kirda, E., Tra-
chtenberg, A., editors, Recent Advances in Intrusion Detection, 11th

International Symposium, RAID 2008, Cambridge, MA, USA, Septem-
ber 15-17, 2008. Proceedings, vol. 5230 of Lecture Notes in Computer
Science, s. 394–395. Springer, 2008.

[41] Russell, S. J., Norvig, P. Artificial Intelligence: A Modern Ap-
proach (2nd Edition). Prentice Hall, December 2002.

[42] Shoham, Y. Agent-oriented programming.. Artif. Intell., sv. 60, č. 1,
s. 51–92, 1993.

34

[43] Shoham, Y., Powers, R., Grenager, T. If multi-agent learning is
the answer, what is the question?. Artif. Intell., sv. 171, č. 7, s. 365–377,
2007.

[44] Thomas, S. R. PLACA, an agent oriented programming language.

PhD thesis, Stanford, CA, USA, 1993.

[45] Vokřínek, J., Pavlíček, D., Šmerák, R. Simulation of manufactur-
ing processes using multi-agent technology. In Pham, D., Eldukhri,
E., Soroka, A., editors, Intelligent Production Machines and Systems,
s. 461–466. Elsevier Science, 2005.

[46] Vrba, P., Macurek, F., Marík, V. Using radio frequency iden-
tification in agent-based manufacturing control systems. In HoloMAS,
s. 176–187, 2005.

[47] Winikoff, M. JACKTM Intelligent Agents: An Industrial Strength
Platform., chapter 7, s. 175–193 Volume 15 of Multiagent Systems, Ar-
tificial Societies, and Simulated Organizations [6], 2005.

[48] Wooldridge, M. Reasoning about rational agents. MIT Press, Lon-
don, 2000.

35

36

Centrum pro rozvoj výzkumu pokročilých řídicích a senzorických technologií
CZ.1.07/2.3.00/09.0031

Ústav automatizace a měřicí techniky
VUT v Brně
Kolejní 2906/4
612 00 Brno
Česká Republika

http://www.crr.vutbr.cz
info@crr.vutbtr.cz

	Introduction to Agent-based Computing and Multi-agent Systems
	Formal Models of Agent Based Systems
	Agent Architectures
	Reactive Agents
	Deliberative Agents

	Research Challenges and Applications of Agent Based Computing

	Introduction to Programming Autonomous Agents and Multi-agent Systems
	Agent Platforms
	FIPA Specifications
	FIPA Management Reference Model
	Additional Platform Services

	Agent-based Modeling and Simulation
	Simulation Structure
	Simulation Execution Cycle
	Advantages
	Platforms and Tools

	Agent Applications in Traffic and Transportation
	Simulating Air Traffic Management in AgentFly
	Collision Avoidance Algorithms in AgentFly

	Agent Applications in Network Security Monitoring
	Motivation
	Attacks
	Defence Strategies

	Agent Applications in Production Planning
	Agent-based Planning for Industry
	Industrial Agent-based Applications

